Difference schemes on nonuniform grids for the two-dimensional convection-diffusion equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 12, pp. 2042-2052 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

New second-order accurate monotone difference schemes on nonuniform spatial grids for two-dimensional stationary and nonstationary convection-diffusion equations are proposed. The monotonicity and stability of the solutions of the computational methods with respect to the boundary conditions, the initial condition, and the right-hand side are proved. Two-sided and corresponding a priori estimates are obtained in the grid norm of $C$. The convergence of the proposed algorithms to the solution of the original differential problem with the second order is proved.
@article{ZVMMF_2017_57_12_a6,
     author = {P. P. Matus and Le Minh Hieu},
     title = {Difference schemes on nonuniform grids for the two-dimensional convection-diffusion equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {2042--2052},
     year = {2017},
     volume = {57},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_12_a6/}
}
TY  - JOUR
AU  - P. P. Matus
AU  - Le Minh Hieu
TI  - Difference schemes on nonuniform grids for the two-dimensional convection-diffusion equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2017
SP  - 2042
EP  - 2052
VL  - 57
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_12_a6/
LA  - ru
ID  - ZVMMF_2017_57_12_a6
ER  - 
%0 Journal Article
%A P. P. Matus
%A Le Minh Hieu
%T Difference schemes on nonuniform grids for the two-dimensional convection-diffusion equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2017
%P 2042-2052
%V 57
%N 12
%U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_12_a6/
%G ru
%F ZVMMF_2017_57_12_a6
P. P. Matus; Le Minh Hieu. Difference schemes on nonuniform grids for the two-dimensional convection-diffusion equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 12, pp. 2042-2052. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_12_a6/

[1] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989 | MR

[2] Samarskii A. A., Gulin A. A., Chislennye metody, Nauka, M., 1989 | MR

[3] Matus P. P., Vo Tkhi Kim Tuen, Gaspar F., “Monotonnye raznostnye skhemy dlya lineinogo parabolicheskogo uravneniya s granichnymi usloviyami smeshannogo tipa”, Dokl. NAN Belarusi, 58:5 (2014), 18–22 | MR

[4] Matus P., “On convergence of difference schemes for IBVP for quasilinear parabolic equation with generalized solutions”, Comput. Meth. Appl. Math., 14:3 (2014), 361–371 | DOI | MR

[5] Matus P. P., Khieu L. M., Volkov L. G., “Printsip maksimuma dlya raznostnykh skhem s nepostoyannymi vkhodnymi dannymi”, Dokl. NAN Belarusi, 59:5 (2015), 13–17 | MR

[6] Piotr Matus, Le Minh Hieu, Lubin G. Vulkov, “Analysis of second order difference schemes on non-uniform grids for quasilinear parabolic equations”, J. of Comput. Appl. Math., 310 (2017), 186–199 | DOI | MR

[7] Samarskii A. A., Vabischevich P. N., Chislennye metody resheniya zadach konvektsii-diffuzii, Editorial URSS, M., 1999

[8] Samarskii A. A., Vabischevich P. N., Matus P. P., “Raznostnye skhemy povyshennogo poryadka tochnosti na neravnomernykh setkakh”, Differents. ur-niya, 32:2 (1996), 313–322

[9] “Samarskii A. A., Vabischevich P. N., Matus P. P.”, Zh. vychisl. matem. i matem. fiz., 38:3 (1998), 413–424 | MR

[10] Samarskii A. A., Mazhukin V. I., Matus P. P., “Raznostnye skhemy na neravnomernykh setkakh dlya dvumernogo parabolicheskogo uravneniya”, Differents. ur-niya, 34:7 (1998), 980–987 | MR

[11] Samarskii A., Vabishchevich P., Matus P., Difference schemes with operator factors, Kluwer Academic Publishers, London, 2002 | MR

[12] Rychagov V. G., Raznostnye skhemy vtorogo poryadka approksimatsii na neravnomernykh setkakh dlya uravnenii s konvektivnym slagaemym, Preprint No 8(520), Institut matem. NAN Belarusi, 1996, 12 pp.

[13] Samarskii A. A., Matus P. P., Rychagov V. G., “Monotonnye raznostnye skhemy povyshennogo poryadka tochnosti na neravnomernykh setkakh dlya zadach konvektsii-diffuzii”, Matem. modelirovanie, 9:2 (1997), 95–96 | MR

[14] Malafei D. A., “Ekonomichnye monotonnye raznostnye skhemy dlya mnogomernykh zadach konvetsii-diffuzii na neravnomernykh setkakh”, Dokl. NAN Belarusi, 44:4 (2000), 21–25 | MR

[15] Zhuk V. A., “Monotonnaya raznostnaya skhema dlya parabolicheskikh i ellipticheskikh uravnenii s mladshimi proizvodnymi na neravnomernykh setkakh”, Vestsi NAN Belarusi Ser. fiz.-mat. Navuk, 1998, no. 2, 13–17

[16] Kalitkin N. N., Chislennye metody, Nauka, M., 1978 | MR