Hölder estimates for the regular component of the solution to a singularly perturbed convection-diffusion equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 12, pp. 1983-2020 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In a half-plane, a homogeneous Dirichlet boundary value problem for an inhomogeneous singularly perturbed convection-diffusion equation with constant coefficients and convection directed orthogonally away from the boundary of the half-plane is considered. Assuming that the right-hand side of the equation belongs to the space $C^\lambda$, $0<\lambda<1$, and the solution is bounded at infinity, an unimprovable estimate of the solution is obtained in a corresponding Hölder norm (anisotropic with respect to a small parameter).
@article{ZVMMF_2017_57_12_a4,
     author = {V. B. Andreev},
     title = {H\"older estimates for the regular component of the solution to a singularly perturbed convection-diffusion equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1983--2020},
     year = {2017},
     volume = {57},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_12_a4/}
}
TY  - JOUR
AU  - V. B. Andreev
TI  - Hölder estimates for the regular component of the solution to a singularly perturbed convection-diffusion equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2017
SP  - 1983
EP  - 2020
VL  - 57
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_12_a4/
LA  - ru
ID  - ZVMMF_2017_57_12_a4
ER  - 
%0 Journal Article
%A V. B. Andreev
%T Hölder estimates for the regular component of the solution to a singularly perturbed convection-diffusion equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2017
%P 1983-2020
%V 57
%N 12
%U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_12_a4/
%G ru
%F ZVMMF_2017_57_12_a4
V. B. Andreev. Hölder estimates for the regular component of the solution to a singularly perturbed convection-diffusion equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 12, pp. 1983-2020. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_12_a4/

[1] Bakhvalov N. S., “K optimizatsii metodov resheniya kraevykh zadach pri nalichii pogranichnogo sloya”, Zh. vychisl. matem. i matem. fiz., 9:4 (1969), 841–859

[2] Kellogg R. B., Stynes M., “Comer singularities and boundary layers in a simple convection-diffusion problem”, J. Differ. Equat., 213 (2005), 81–120 | DOI | MR

[3] Shishkin G. I., Setochnye approksimatsii singulyarno vozmuschennykh ellipticheskikh i parabolicheskikh uravnenii, UrO RAN, Ekaterinburg, 1992

[4] O'Riordan E., Shishkin G. I., “A technique to provide parameter-uniform convergence for a singularly perturbed convection-diffusion equation”, J. Comput. Appl. Math., 206 (2007), 136–145 | DOI | MR

[5] O'Riordan E., Shishkin G. I., “Parameter uniform numerical methods for singularly perturbed elliptic problems with parabolic boundary layers”, Appl. Numer. Math., 58 (2008), 1761–1772 | DOI | MR

[6] Kopteva N., O'Riordan E., “Shishkin meshes in the numerical solution of singularly perturbed differential equations”, Int. J. Numer. Analys. Modeling, 7:3 (2010), 393–415 | MR

[7] Andreev V. B., “Ravnomernaya setochnaya approksimatsiya negladkikh reshenii smeshannoi kraevoi zadachi dlya singulyarno vozmuschennogo uravneniya reaktsii-diffuzii v pryamougolnike”, Zh. vychisl. matem. i matem. fiz., 48:1 (2008), 90–114 | MR

[8] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1971 | MR

[9] Andreev V. B., “K otsenke gladkosti regulyarnoi sostavlyayuschei resheniya odnomernogo singulyarno vozmuschennogo uravneniya konvektsii-diffuzii”, Zh. vychisl. matem. i matem. fiz., 55:1 (2015), 22–33 | DOI

[10] M. Abramovits, I. Stigan (red.), Spravochnik po spetsialnym funktsiyam, Nauka, M., 1979

[11] Andreev V. B., “Apriornye otsenki shauderovskogo tipa dlya singulyarno vozmuschennogo uravneniya konvektsii-diffuzii i ikh prilozheniya”, Setochnye metody dlya kraevykh zadach i prilozheniya, Kazan, 2010, 70–76

[12] Franz S., Kopteva N., “Green's function estimates for a singularly perturbed convection-diffusion problem”, J. Differ. Equat., 252 (2012), 1521–1545 | DOI | MR

[13] Franz S., Kopteva N., On the sharpness of Green's function estimates for a convection-diffusion problem, 2011, arXiv: 1102.4520

[14] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Nauka, M., 1971 | MR

[15] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady, v. 1, Elementarnye funktsii, Fizmatlit, M., 2002 | MR

[16] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii. Gipergeometricheskaya funktsiya. Funktsii Lezhandra, v. 1, Nauka, M., 1973 | MR

[17] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady, v. 2, Spetsialnye funktsii, Fizmatlit, M., 2003 | MR

[18] Bekkenbakh E., Bellman R., Neravenstva, Mir, M., 1965 | MR