Recovery of a rapidly oscillating source in the heat equation from solution asymptotics
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 12, pp. 1955-1965 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Four problems are solved in which a high-frequency source in the one-dimensional heat equation with homogeneous initial-boundary conditions is recovered from partial asymptotics of its solution. It is shown that the source can be completely recovered from an incomplete (two-term) asymptotic representation of the solution. The formulation of each source recovery problem is preceded by constructing and substantiating asymptotics of the solution to the original initial-boundary value problem.
@article{ZVMMF_2017_57_12_a2,
     author = {P. V. Babich and V. B. Levenshtam and S. P. Prika},
     title = {Recovery of a rapidly oscillating source in the heat equation from solution asymptotics},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1955--1965},
     year = {2017},
     volume = {57},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_12_a2/}
}
TY  - JOUR
AU  - P. V. Babich
AU  - V. B. Levenshtam
AU  - S. P. Prika
TI  - Recovery of a rapidly oscillating source in the heat equation from solution asymptotics
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2017
SP  - 1955
EP  - 1965
VL  - 57
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_12_a2/
LA  - ru
ID  - ZVMMF_2017_57_12_a2
ER  - 
%0 Journal Article
%A P. V. Babich
%A V. B. Levenshtam
%A S. P. Prika
%T Recovery of a rapidly oscillating source in the heat equation from solution asymptotics
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2017
%P 1955-1965
%V 57
%N 12
%U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_12_a2/
%G ru
%F ZVMMF_2017_57_12_a2
P. V. Babich; V. B. Levenshtam; S. P. Prika. Recovery of a rapidly oscillating source in the heat equation from solution asymptotics. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 12, pp. 1955-1965. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_12_a2/

[1] Denisov A. M., “Asimptotika reshenii obratnykh zadach dlya giperbolicheskogo uravneniya s malym parametrom pri starshei proizvodnoi”, Zh. vychisl. matem. i matem. fiz., 53:5 (2013), 744–752 | DOI | MR

[2] Denisov A. M., “Zadachi opredeleniya neizvestnogo istochnika v parabolicheskom i giperbolicheskom uravnenii”, Zh. vychisl. matem. i matem. fiz., 55:4 (2015), 830–835 | DOI

[3] Babich P. V., Levenshtam V. B., “Direct and inverse asymptotic problems high-frequency terms”, Asymptotic Analysis, 97 (2016), 329–336 | DOI | MR

[4] Zenkovskaya S. M., Simonenko I. B., “O vliyanii vibratsii vysokoi chastoty na vozniknovenie konvektsii”, Mekhan. zhidkosti i gaza, 1966, no. 5, 51–55

[5] Simonenko I. B., “Obosnovanie metoda usredneniya dlya zadachi konvektsii v pole bystro ostsilliruyuschikh sil i dlya drugikh parabolicheskikh uravnenii”, Matem. sb., 87(129):2 (1972), 236–253

[6] Levenshtam V. B., “Metod usredneniya v zadache konvektsii pri vysokochastotnykh naklonnykh vibratsiyakh”, Sibirskii matem. zh., 37:5 (1996), 1103–1116 | MR

[7] Levenshtam V. B., “Asimptoticheskoe razlozhenie resheniya zadachi o vibratsionnoi konvektsii”, Zh. vychisl. matem. i matem. fiz., 40:9 (2000), 1416–1424 | MR