Inscribed balls and their centers
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 12, pp. 1946-1954 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A ball of maximal radius inscribed in a convex closed bounded set with a nonempty interior is considered in the class of uniformly convex Banach spaces. It is shown that, under certain conditions, the centers of inscribed balls form a uniformly continuous (as a set function) set-valued mapping in the Hausdorff metric. In a finite-dimensional space of dimension $n$, the set of centers of balls inscribed in polyhedra with a fixed collection of normals satisfies the Lipschitz condition with respect to sets in the Hausdorff metric. A Lipschitz continuous single-valued selector of the set of centers of balls inscribed in such polyhedra can be found by solving $n+1$ linear programming problems.
@article{ZVMMF_2017_57_12_a1,
     author = {M. V. Balashov},
     title = {Inscribed balls and their centers},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1946--1954},
     year = {2017},
     volume = {57},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_12_a1/}
}
TY  - JOUR
AU  - M. V. Balashov
TI  - Inscribed balls and their centers
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2017
SP  - 1946
EP  - 1954
VL  - 57
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_12_a1/
LA  - ru
ID  - ZVMMF_2017_57_12_a1
ER  - 
%0 Journal Article
%A M. V. Balashov
%T Inscribed balls and their centers
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2017
%P 1946-1954
%V 57
%N 12
%U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_12_a1/
%G ru
%F ZVMMF_2017_57_12_a1
M. V. Balashov. Inscribed balls and their centers. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 12, pp. 1946-1954. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_12_a1/

[1] Balashov M. V., “O mnogogrannykh approksimatsiyakh v n-mernom prostranstve”, Zh. vychisl. matem. i matem. fiz., 56:10 (2016), 1695–1701 | DOI

[2] Polovinkin E. S., Ivanov G. E., Balashov M. V., Konstantinov R. V., Khorev A. V., “Ob odnom algoritme chislennogo resheniya lineinykh differentsialnykh igr”, Matem. sb., 192:10 (2001), 95–122 | DOI

[3] Dudov S. I., “Sistematizatsiya zadach po sharovym otsenkam vypuklogo kompakta”, Matem. sb., 206:9 (2015), 99–120 | DOI

[4] Polovinkin E. S., Balashov M. V., Elementy vypuklogo i silno vypuklogo analiza, Izd. 2-e, Fizmatlit, M., 2007

[5] Dudov S. I., Dudova A. S., “Ob ustoichivosti resheniya zadach o vneshnei i vnutrennei otsenke vypuklogo kompakta sharom”, Zh. vychisl. matem. i matem. fiz., 47:10 (2007), 1657–1671

[6] Dudov S. I., Osiptsev M. A., “Ob ustoichivosti resheniya zadachi o ravnomernoi otsenke vypuklogo tela sharom fiksirovannogo radiusa”, Zh. vychisl. matem. i matem. fiz., 56:4 (2016), 535–550 | DOI

[7] Diestel J., Geometry of Banach spaces — selected topics, Springer-Verlag, Berlin, 1975 | MR

[8] Balashov Maxim V., Repovš Dušan, “Uniform convexity and the splitting problem for selections”, J. Math. Anal. Appl., 360 (2009), 307–316 | DOI | MR

[9] Cellina A. (ed.), Methods of nonconvex analysis, Lect. Notes in Math., 1446, Springer, Varenna, Italy, 1989 | MR

[10] Polyak B. T., “Existence theorems and convergence of minimizing sequences in extremum problems with restrictions”, Soviet Math., 7 (1966), 72–75 | MR

[11] Balashov M. V., “Antidistance and Antiprojection in the Hilbert Space”, Journal of Convex Analysis, 22:2 (2015), 521–536 | MR

[12] Borwein J. M., Fitzpatrick S. P., “Existence of nearest points in Banach spaces”, Canad. J. Math., 61 (1989), 702–720 | DOI | MR

[13] Balashov Maxim V., Repovš Dušan, “Uniformly convex subsets of the Hilbert space with modulus of convexity of the second order”, J. Math. Anal. Appl., 377 (2011), 754–761 | DOI | MR

[14] Balashov Maxim V., “Intersection of a set with a hyperplane”, J. Convex Analysis, 23:1 (2016), 227–236 | MR

[15] Druzhinin Yu. Yu., “O suschestvovanii lipshitsevoi vyborki iz chebyshevskikh tsentrov”, Matem. sb., 204:5 (2013), 25–44 | DOI

[16] Rokafellar R. T., Vypuklyi analiz, Mir, M., 1973