Inverse linear difference operators
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 12, pp. 1933-1945 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For matrices whose elements are scalar linear difference operators, algorithms for checking invertibility (unimodularity) and constructing an inverse matrix (if it exists) are proposed. Their complexity is lower than that of other available algorithms. The differences of these algorithms from their differential analogues are discussed.
@article{ZVMMF_2017_57_12_a0,
     author = {S. A. Abramov},
     title = {Inverse linear difference operators},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1933--1945},
     year = {2017},
     volume = {57},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_12_a0/}
}
TY  - JOUR
AU  - S. A. Abramov
TI  - Inverse linear difference operators
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2017
SP  - 1933
EP  - 1945
VL  - 57
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_12_a0/
LA  - ru
ID  - ZVMMF_2017_57_12_a0
ER  - 
%0 Journal Article
%A S. A. Abramov
%T Inverse linear difference operators
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2017
%P 1933-1945
%V 57
%N 12
%U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_12_a0/
%G ru
%F ZVMMF_2017_57_12_a0
S. A. Abramov. Inverse linear difference operators. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 12, pp. 1933-1945. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_12_a0/

[1] Abramov S. A., “On the differential and full algebraic complexities of operator matrices transformations”, LNCS, 9890, Springer, Heidelberg, 2016, 1–14 | MR

[2] van der Put M., Singer M. F., Galois theory of differential equations, Grundlehren der mathematischen Wissenschaften, 328, Springer, Heidelberg, 2003 | MR

[3] Khovanskii A. G., Topologicheskaya teoriya Galua. Razreshimost i nerazreshimost uravnenii v konechnom vide, MTsNMO, M., 2008

[4] van der Put M., Singer M. F., Galois theory of difference equations, LNM, 1666, Springer, Heidelberg, 1997

[5] Abramov S., Barkatou M., “On the dimension of solution spaces of full rank linear differential systems”, LNCS, 8136, Springer, Heidelberg, 2016, 1–9 | MR

[6] Abramov S. A., “Ob obraschenii raznostnykh operatornykh matrits”, Differentsialnye uravneniya i smezhnye voprosy matematiki, Tr. VIII Priokskoi nauchn. konferentsii (10–11 iyunya 2016 goda, Kolomna–Konstantinovo), 2016, 4–12

[7] Kats V. G., Chen P., Kvantovyi analiz, MTsNMO, M., 2005

[8] Andrews G. E., q-Series: their development and application in analysis, number theory, combinatorics, physics, and computer algebra, CBMS Regional Conference Series, 66, AMS, Pennsylvania, 1986 | DOI | MR

[9] Abramov S., Barkatou M., “On solution spaces of products of linear differential or difference operators”, ACM Comm. in Computer Algebra, 4 (2014), 155–165 | MR

[10] Franke C. H., “Picard-Vessiot theory of linear homogeneous difference equations”, Trans. Amer. Math. Soc., 108 (1963), 491–515 | DOI | MR

[11] Knuth D. E., “Big omicron and big omega and big theta”, ACM SIGACT News, 8:2 (1976), 18–23 | DOI

[12] Abramov S., “EG-eliminations”, J. of Difference Equat. Applicat., 5 (1999), 393–433 | DOI | MR

[13] Abramov S., Bronstein M., Linear algebra for skew-polynomial matrices, Rapport de Recherche INRIA, RR-4420, March 2002 https://hal.inria.fr/inria-00072168

[14] Abramov S., Bronstein M., “On solutions of linear functional systems”, ISSAC' 2001 Proc., 2001, 1–6 | MR

[15] Abramov S. A., Khmelnov D. E., “Lineinye differentsialnye i raznostnye sistemy: EGS-i EGc-isklyucheniya”, Programmirovanie, 2013, no. 2, 51–74

[16] Barkatou M. A., El Bacha C., Labahn G., Pflugel E., “On simultaneous row and column reduction of higher-order linear differential systems”, J. Symbolic Comput., 49:1 (2013), 45–64 | DOI | MR

[17] Beckermann B., Labahn G., “Fraction-free computation of matrix rational interpolants and matrix GCDs”, SIAM J. Matrix Anal. Appl., 77:1 (2000), 114–144 | DOI | MR

[18] Beckermann B., Cheng H., Labahn G., “Fraction-free row reduction of matrices of Ore polynomials”, J. Symbolic Comput., 41 (2006), 513–543 | DOI | MR

[19] Benoit A., Bostan A., van der Hoeven J., “Quasi-optimal multiplication of linear differential operators”, Proc. FOCS'12, IEEE Comp. Soc. Press, New Brunswick, 2012, 524–530 | MR

[20] Mulders T., Stotjohann A., “On lattice reduction for polynomial matrices”, J. Symb. Comput., 37:4 (2004), 485–510 | DOI | MR

[21] Middeke J., A polynomial-time algorithm for the Jacobson form for matrices of differential operators, Tech. Report in RISC Report Series, No 08-13, 2008 | MR

[22] Giesbrecht M., Sub Kim M., “Computation of the Hermite form of a Matrix of Ore Polynomials”, J. Algebra, 376 (2013), 341–362 | DOI | MR

[23] Ore O., “Theory of non-commutative polynomials”, Annals of Mathematics, 34 (1933), 480–508 | DOI | MR

[24] Bronstein M., Petkovsek M., “An introduction to pseudo-linear algebra”, Theor. Comput. Sci., 157:1 (1996), 3–33 | DOI | MR

[25] Jeannerod C.-P., Villard G., “Essentially optimal computation of the inverse of generic polynomial matrices”, J. Complexity, 21:1 (2005), 72–86 | DOI | MR

[26] Bürgisser P., Clausen M., Shokrollahi M. A., Algebraic complexity theory, Grundlehren der mathematischen Wissenschaften, 315, Springer, Heidelberg, 1997 | DOI | MR

[27] Akho A., Khopkroft Dzh., Ulman Dzh., Postroenie i analiz vychislitelnykh algoritmov, Mir, M., 1979

[28] Bostan A., Schost E., “Polynomial evaluation and interpolation on special sets of points”, J. Complexity, 21:4 (2005), 420–446 | DOI | MR

[29] Strassen V., “Gaussian elimination is not optimal”, Numer. Math., 13 (1969), 354–356 | DOI | MR

[30] Coppersmith D., Winograd S., “Matrix multiplication via arithmetic progressions”, J. Symb. Comput., 9:3 (1990), 251–280 | DOI | MR

[31] Vassilevska Williams V., “Multiplying matrices faster than Coppersmith-Winograd”, STOC'2012 Proc., 887–898 | MR

[32] van der Hoeven J., “FFT-like multiplication of linear differential operators”, J. Symb. Comput., 33 (2002), 123–127 | DOI | MR

[33] Bostan A., Chyzak F., Le Roix N., “Products of ordinary differential operators by evaluating and interpolation”, Proc. ISSAC'2008, 2008, 23–30 | MR