@article{ZVMMF_2017_57_12_a0,
author = {S. A. Abramov},
title = {Inverse linear difference operators},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1933--1945},
year = {2017},
volume = {57},
number = {12},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_12_a0/}
}
S. A. Abramov. Inverse linear difference operators. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 12, pp. 1933-1945. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_12_a0/
[1] Abramov S. A., “On the differential and full algebraic complexities of operator matrices transformations”, LNCS, 9890, Springer, Heidelberg, 2016, 1–14 | MR
[2] van der Put M., Singer M. F., Galois theory of differential equations, Grundlehren der mathematischen Wissenschaften, 328, Springer, Heidelberg, 2003 | MR
[3] Khovanskii A. G., Topologicheskaya teoriya Galua. Razreshimost i nerazreshimost uravnenii v konechnom vide, MTsNMO, M., 2008
[4] van der Put M., Singer M. F., Galois theory of difference equations, LNM, 1666, Springer, Heidelberg, 1997
[5] Abramov S., Barkatou M., “On the dimension of solution spaces of full rank linear differential systems”, LNCS, 8136, Springer, Heidelberg, 2016, 1–9 | MR
[6] Abramov S. A., “Ob obraschenii raznostnykh operatornykh matrits”, Differentsialnye uravneniya i smezhnye voprosy matematiki, Tr. VIII Priokskoi nauchn. konferentsii (10–11 iyunya 2016 goda, Kolomna–Konstantinovo), 2016, 4–12
[7] Kats V. G., Chen P., Kvantovyi analiz, MTsNMO, M., 2005
[8] Andrews G. E., q-Series: their development and application in analysis, number theory, combinatorics, physics, and computer algebra, CBMS Regional Conference Series, 66, AMS, Pennsylvania, 1986 | DOI | MR
[9] Abramov S., Barkatou M., “On solution spaces of products of linear differential or difference operators”, ACM Comm. in Computer Algebra, 4 (2014), 155–165 | MR
[10] Franke C. H., “Picard-Vessiot theory of linear homogeneous difference equations”, Trans. Amer. Math. Soc., 108 (1963), 491–515 | DOI | MR
[11] Knuth D. E., “Big omicron and big omega and big theta”, ACM SIGACT News, 8:2 (1976), 18–23 | DOI
[12] Abramov S., “EG-eliminations”, J. of Difference Equat. Applicat., 5 (1999), 393–433 | DOI | MR
[13] Abramov S., Bronstein M., Linear algebra for skew-polynomial matrices, Rapport de Recherche INRIA, RR-4420, March 2002 https://hal.inria.fr/inria-00072168
[14] Abramov S., Bronstein M., “On solutions of linear functional systems”, ISSAC' 2001 Proc., 2001, 1–6 | MR
[15] Abramov S. A., Khmelnov D. E., “Lineinye differentsialnye i raznostnye sistemy: EGS-i EGc-isklyucheniya”, Programmirovanie, 2013, no. 2, 51–74
[16] Barkatou M. A., El Bacha C., Labahn G., Pflugel E., “On simultaneous row and column reduction of higher-order linear differential systems”, J. Symbolic Comput., 49:1 (2013), 45–64 | DOI | MR
[17] Beckermann B., Labahn G., “Fraction-free computation of matrix rational interpolants and matrix GCDs”, SIAM J. Matrix Anal. Appl., 77:1 (2000), 114–144 | DOI | MR
[18] Beckermann B., Cheng H., Labahn G., “Fraction-free row reduction of matrices of Ore polynomials”, J. Symbolic Comput., 41 (2006), 513–543 | DOI | MR
[19] Benoit A., Bostan A., van der Hoeven J., “Quasi-optimal multiplication of linear differential operators”, Proc. FOCS'12, IEEE Comp. Soc. Press, New Brunswick, 2012, 524–530 | MR
[20] Mulders T., Stotjohann A., “On lattice reduction for polynomial matrices”, J. Symb. Comput., 37:4 (2004), 485–510 | DOI | MR
[21] Middeke J., A polynomial-time algorithm for the Jacobson form for matrices of differential operators, Tech. Report in RISC Report Series, No 08-13, 2008 | MR
[22] Giesbrecht M., Sub Kim M., “Computation of the Hermite form of a Matrix of Ore Polynomials”, J. Algebra, 376 (2013), 341–362 | DOI | MR
[23] Ore O., “Theory of non-commutative polynomials”, Annals of Mathematics, 34 (1933), 480–508 | DOI | MR
[24] Bronstein M., Petkovsek M., “An introduction to pseudo-linear algebra”, Theor. Comput. Sci., 157:1 (1996), 3–33 | DOI | MR
[25] Jeannerod C.-P., Villard G., “Essentially optimal computation of the inverse of generic polynomial matrices”, J. Complexity, 21:1 (2005), 72–86 | DOI | MR
[26] Bürgisser P., Clausen M., Shokrollahi M. A., Algebraic complexity theory, Grundlehren der mathematischen Wissenschaften, 315, Springer, Heidelberg, 1997 | DOI | MR
[27] Akho A., Khopkroft Dzh., Ulman Dzh., Postroenie i analiz vychislitelnykh algoritmov, Mir, M., 1979
[28] Bostan A., Schost E., “Polynomial evaluation and interpolation on special sets of points”, J. Complexity, 21:4 (2005), 420–446 | DOI | MR
[29] Strassen V., “Gaussian elimination is not optimal”, Numer. Math., 13 (1969), 354–356 | DOI | MR
[30] Coppersmith D., Winograd S., “Matrix multiplication via arithmetic progressions”, J. Symb. Comput., 9:3 (1990), 251–280 | DOI | MR
[31] Vassilevska Williams V., “Multiplying matrices faster than Coppersmith-Winograd”, STOC'2012 Proc., 887–898 | MR
[32] van der Hoeven J., “FFT-like multiplication of linear differential operators”, J. Symb. Comput., 33 (2002), 123–127 | DOI | MR
[33] Bostan A., Chyzak F., Le Roix N., “Products of ordinary differential operators by evaluating and interpolation”, Proc. ISSAC'2008, 2008, 23–30 | MR