Application of the Jacobi functional equation and the ATS theorem in a quantum optical model
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 11, pp. 1860-1881 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new method is devised to study the atomic inversion in the model of a two-level atom interacting with a single quantized mode of the (initially coherent) electromagnetic field in an ideal resonant cavity. The method is based on number-theoretic results applied to the approximation of special series, specifically, on the functional equation for Jacobi theta functions and the ATS theorem. New asymptotic formulas are derived, with the help of which the behavior of the atomic inversion function on various time intervals can be determined in detail depending on the parameters of the system.
@article{ZVMMF_2017_57_11_a9,
     author = {E. A. Karatsuba},
     title = {Application of the {Jacobi} functional equation and the {ATS} theorem in a quantum optical model},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1860--1881},
     year = {2017},
     volume = {57},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_11_a9/}
}
TY  - JOUR
AU  - E. A. Karatsuba
TI  - Application of the Jacobi functional equation and the ATS theorem in a quantum optical model
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2017
SP  - 1860
EP  - 1881
VL  - 57
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_11_a9/
LA  - ru
ID  - ZVMMF_2017_57_11_a9
ER  - 
%0 Journal Article
%A E. A. Karatsuba
%T Application of the Jacobi functional equation and the ATS theorem in a quantum optical model
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2017
%P 1860-1881
%V 57
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_11_a9/
%G ru
%F ZVMMF_2017_57_11_a9
E. A. Karatsuba. Application of the Jacobi functional equation and the ATS theorem in a quantum optical model. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 11, pp. 1860-1881. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_11_a9/

[1] Jaynes E. T., Cummings F. W., “Comparison of quantum and semiclassical radiation theories with application to the beam maser”, Proc. IEEE, 51 (1963), 89–109 | DOI

[2] Paul H., “Induzierte emission bei starker Einstrahlung”, Annalen der Physik, 466:7–8 (1963), 411–412 | DOI | MR

[3] Shlyaikh V. P., Kvantovaya optika v fazovom prostranstve, Fizmatlit, M., 2005

[4] Skalli M. O., Zubairi M. S., Kvantovaya optika, Fizmatlit, M., 2003

[5] Narozhny N. B., Sanchez-Mondragon J. J., Eberly J. H., “Coherence versus incoherence: Collapse and revival in a simple quantum model”, Phys. Rev. A, 23:1 (1981), 236–247 | DOI | MR

[6] Fleischhauer M., Schleich W. P., “Revivals made simple: Poisson summation formula as a key to the revivals in the Jaynes-Cummings model”, Phys. Rev. A, 47:5 (1993), 4258–4269 | DOI

[7] Vogel W., de Matos Filho R. L., “Nonlinear Jaynes-Cummings dynamics of a trapped ion”, Phys. Rev. A, 52:5 (1995), 4214–4217 | DOI

[8] Karbasi S., Koch K. W., Mafi A., “Modal perspective on the transverse Anderson localization of light in disordered optical lattices”, J. Opt. Soc. Am. B, 30:6 (2013), 1452–1461 | DOI

[9] Azuma H., Ban M., “Equivalence of a compressible inviscid flow and the Bloch vector under the thermal Jaynes-Cummings model”, Physica D: Nonlinear Phenomena, 308 (2015), 127–135 | DOI | MR

[10] Torres J. M., Bernád J. Z., Alber G., “Unambiguous atomic Bell measurement assisted by multiphoton states”, Applied Physics B, 122 (2016), 1–11 | DOI

[11] Ozhigov Yu. I., Skovoroda N. A., Viktorova N. B., “Kvantovye vozrozhdeniya nerabievskogo tipa v modeli Dzheinsa-Kammingsa”, Teor. i matem. fiz., 189:2 (2016), 312–320 | DOI | MR

[12] Karatsuba E. A., “On an approach to the study of the Jaynes-Cummings sum in quantum optics”, Numerical Algorithms, 45 (2007), 127–137 | DOI | MR

[13] Karatsuba A. A., Karatsuba E. A., “Application of ATS in a quantum-optical model”, Analysis and Mathematical Physics, Birkhauser Publ., 2009 | MR

[14] Karatsuba A. A., Karatsuba E. A., “Resummation formula for collapse and revival in the Jaynes-Cummings model”, J. Phys. A: Math. Theor., 42 (2009), 1–16 | DOI | MR

[15] Karatsuba A. A., Karatsuba E. A., “On application of the functional equation of the jacobi theta function to approximation of atomic inversion in the Jaynes-Cummings model”, Pacific J. Appl. Math., 2:3 (2010), 41–63

[16] Karatsuba A. A., Osnovy analiticheskoi teorii chisel, 2-e izd., Nauka, M., 1983 | MR

[17] Uitteker E. T., Vatson Dzh. N., Kurs sovremennogo analiza, v. 2, Transtsendentnye funktsii, Fizmatlit, M., 1963

[18] Karatsuba A. A., “Approximation of exponential sums by shorter ones”, Proc. Indian Acad. Sci. (Math. Sci.), 97 (1987), 167–178 | DOI | MR

[19] Karatsuba A. A., Voronin S. M., The Riemann Zeta-Function, W. de Gruyter, Verlag, Berlin, 1992 | MR

[20] Karatsuba A. A., Korolev M. A., “Teorema o priblizhenii trigonometricheskoi summy bolee korotkoi”, Izv. RAN. Ser. matem., 71:2 (2007), 123–150 | DOI | MR

[21] Karatsuba E. A., “Approximation of sums of oscillating summands in certain physical problems”, J. Math. Phys., 45 (2004), 4310–4321 | DOI | MR

[22] Karatsuba E. A., “Approximation of exponential sums in the problem on the oscillator motion caused by pushes”, Chebyshevskii sbornik, 6:3 (2005), 205–224 | MR