Difference scheme for an initial-boundary value problem for a singularly perturbed transport equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 11, pp. 1824-1830 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An initial-boundary value problem for a singularly perturbed transport equation with a perturbation parameter $\varepsilon$ multiplying the spatial derivative is considered on the set $\overline{G}=G\cup S$, where $\overline{G}=\overline{D}\times[0\leqslant t\leqslant T]$, $\overline{D}=\{0\leqslant x\leqslant d\}$, $S = S^l\cup S$, $S^l$ and $S_0$ are the lateral and lower boundaries. The parameter $\varepsilon$ takes arbitrary values from the half-open interval $(0,1]$. In contrast to the well-known problem for the regular transport equation, for small values of $\varepsilon$, this problem involves a boundary layer of width $O(\varepsilon)$ appearing in the neighborhood of $S^l$; in the layer, the solution of the problem varies by a finite value. For this singularly perturbed problem, the solution of a standard difference scheme on a uniform grid does not converge $\varepsilon$-uniformly in the maximum norm. Convergence occurs only if $h=dN^{-1}\ll\varepsilon$, $N_0^{-1}\ll 1$, where $N$ and $N_0$ are the numbers of grid intervals in $x$ and $t$, respectively, and $h$ is the mesh size in $x$. The solution of the considered problem is decomposed into the sum of regular and singular components. With the behavior of the singular component taken into account, a special difference scheme is constructed on a Shishkin mesh, i.e., on a mesh that is piecewise uniform in $x$ and uniform in $t$. On such a grid, a monotone difference scheme for the initial-boundary value problem for the singularly perturbed transport equation converges $\varepsilon$-uniformly in the maximum norm at an $\mathcal{O}(N^{-1}+N_0^{-1})$ rate.
@article{ZVMMF_2017_57_11_a6,
     author = {G. I. Shishkin},
     title = {Difference scheme for an initial-boundary value problem for a singularly perturbed transport equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1824--1830},
     year = {2017},
     volume = {57},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_11_a6/}
}
TY  - JOUR
AU  - G. I. Shishkin
TI  - Difference scheme for an initial-boundary value problem for a singularly perturbed transport equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2017
SP  - 1824
EP  - 1830
VL  - 57
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_11_a6/
LA  - ru
ID  - ZVMMF_2017_57_11_a6
ER  - 
%0 Journal Article
%A G. I. Shishkin
%T Difference scheme for an initial-boundary value problem for a singularly perturbed transport equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2017
%P 1824-1830
%V 57
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_11_a6/
%G ru
%F ZVMMF_2017_57_11_a6
G. I. Shishkin. Difference scheme for an initial-boundary value problem for a singularly perturbed transport equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 11, pp. 1824-1830. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_11_a6/

[1] Kalitkin N. N., Chislennye metody, Nauka, M., 1978, 512 pp. | MR

[2] Kalitkin N. N., Koryakin P. V., Chislennye metody. Metody matematicheskoi fiziki, Izdatelskii tsentr “Akademiya”, M., 2013, 304 pp. | MR

[3] Marchuk G. I., Metody vychislitelnoi matematiki, Nauka, M., 1989, 608 pp. | MR

[4] Marchuk G. I., Shaidurov V. V., Povyshenie tochnosti reshenii raznostnykh skhem, Nauka 1979. 320 s., M. | MR

[5] Samarskii A. A., Vvedenie v chislennye metody, Nauka 1982. 272 s., M. | MR

[6] Samarskii A. A., Teoriya raznostnykh skhem, Nauka 1989. 616 s., M. | MR

[7] Shishkin G. I., Setochnye approksimatsii singulyarno vozmuschennykh ellipticheskikh i parabolicheskikh uravnenii, UrO RAN, Ekaterinburg, 1992, 233 pp.

[8] Farrell P. A., Hegarty A., Miller J. J. H., Riordan E., Shishkin G. I., Robust computational techniques for boundary layers, Chapman and Hall/CRC, Boca Raton, 2000, 271 pp. | MR

[9] Shishkin G. I., Shishkina L. P., Difference methods for singular perturbation problems, Chapman Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 140, CRC Press, Boca Raton, 2009, 408 pp. | MR

[10] Miller J. J. H., Riordan E., Shishkin G. I., Fitted numerical methods for singular perturbation problems. Error estimates in the maximum norm for linear problems in one and two dimensions, Revised Ed., World Scientific, Singapore, 2012, 176 pp. | MR

[11] Roos H.-G., Stynes M., Tobiska L., Numerical methods for singularly perturbed differential equations. Convection-diffusion and flow problems, Springer Series in Computational Mathematics, 24, Springer-Verlag, Berlin, 1996, 348 pp. | DOI | MR

[12] Roos H.-G., Stynes M., Tobiska L., Robust numerical methods for singularly perturbed differential equations. Convection-Diffusion-Reaction and Flow Problems, Springer Series in Computational Mathematics, 24, Second Ed., Springer-Verlag, Berlin, 2008, 604 pp. | MR