Difference scheme for an initial-boundary value problem for a singularly perturbed transport equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 11, pp. 1824-1830

Voir la notice de l'article provenant de la source Math-Net.Ru

An initial-boundary value problem for a singularly perturbed transport equation with a perturbation parameter $\varepsilon$ multiplying the spatial derivative is considered on the set $\overline{G}=G\cup S$, where $\overline{G}=\overline{D}\times[0\leqslant t\leqslant T]$, $\overline{D}=\{0\leqslant x\leqslant d\}$, $S = S^l\cup S$, $S^l$ and $S_0$ are the lateral and lower boundaries. The parameter $\varepsilon$ takes arbitrary values from the half-open interval $(0,1]$. In contrast to the well-known problem for the regular transport equation, for small values of $\varepsilon$, this problem involves a boundary layer of width $O(\varepsilon)$ appearing in the neighborhood of $S^l$; in the layer, the solution of the problem varies by a finite value. For this singularly perturbed problem, the solution of a standard difference scheme on a uniform grid does not converge $\varepsilon$-uniformly in the maximum norm. Convergence occurs only if $h=dN^{-1}\ll\varepsilon$, $N_0^{-1}\ll 1$, where $N$ and $N_0$ are the numbers of grid intervals in $x$ and $t$, respectively, and $h$ is the mesh size in $x$. The solution of the considered problem is decomposed into the sum of regular and singular components. With the behavior of the singular component taken into account, a special difference scheme is constructed on a Shishkin mesh, i.e., on a mesh that is piecewise uniform in $x$ and uniform in $t$. On such a grid, a monotone difference scheme for the initial-boundary value problem for the singularly perturbed transport equation converges $\varepsilon$-uniformly in the maximum norm at an $\mathcal{O}(N^{-1}+N_0^{-1})$ rate.
@article{ZVMMF_2017_57_11_a6,
     author = {G. I. Shishkin},
     title = {Difference scheme for an initial-boundary value problem for a singularly perturbed transport equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1824--1830},
     publisher = {mathdoc},
     volume = {57},
     number = {11},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_11_a6/}
}
TY  - JOUR
AU  - G. I. Shishkin
TI  - Difference scheme for an initial-boundary value problem for a singularly perturbed transport equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2017
SP  - 1824
EP  - 1830
VL  - 57
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_11_a6/
LA  - ru
ID  - ZVMMF_2017_57_11_a6
ER  - 
%0 Journal Article
%A G. I. Shishkin
%T Difference scheme for an initial-boundary value problem for a singularly perturbed transport equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2017
%P 1824-1830
%V 57
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_11_a6/
%G ru
%F ZVMMF_2017_57_11_a6
G. I. Shishkin. Difference scheme for an initial-boundary value problem for a singularly perturbed transport equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 11, pp. 1824-1830. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_11_a6/