Grid-characteristic method on embedded hierarchical grids and its application in the study of seismic waves
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 11, pp. 1804-1811 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The grid-characteristic method on a sequence of embedded hierarchical grids is used to study the reflection and diffraction of elastic seismic waves propagating from an earthquake hypocenter to the Earth’s surface. More specifically, the destruction caused by seismic waves in complex heterogeneous structures, such as multi-story buildings, is analyzed. This study is based on computer modeling with the use of the grid-characteristic method, which provides a detailed description of wave processes in heterogeneous media, takes into account all types of emerging waves, and relies on algorithms that perform well on the boundaries of the integration domain and material interfaces. Applying a sequence of hierarchical grids makes it possible to simulate seismic wave propagation from an earthquake hypocenter to ground facilities of interest—multi-story buildings—and to investigate their seismic resistance.
@article{ZVMMF_2017_57_11_a4,
     author = {I. B. Petrov and A. V. Favorskaya and N. I. Khokhlov},
     title = {Grid-characteristic method on embedded hierarchical grids and its application in the study of seismic waves},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1804--1811},
     year = {2017},
     volume = {57},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_11_a4/}
}
TY  - JOUR
AU  - I. B. Petrov
AU  - A. V. Favorskaya
AU  - N. I. Khokhlov
TI  - Grid-characteristic method on embedded hierarchical grids and its application in the study of seismic waves
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2017
SP  - 1804
EP  - 1811
VL  - 57
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_11_a4/
LA  - ru
ID  - ZVMMF_2017_57_11_a4
ER  - 
%0 Journal Article
%A I. B. Petrov
%A A. V. Favorskaya
%A N. I. Khokhlov
%T Grid-characteristic method on embedded hierarchical grids and its application in the study of seismic waves
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2017
%P 1804-1811
%V 57
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_11_a4/
%G ru
%F ZVMMF_2017_57_11_a4
I. B. Petrov; A. V. Favorskaya; N. I. Khokhlov. Grid-characteristic method on embedded hierarchical grids and its application in the study of seismic waves. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 11, pp. 1804-1811. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_11_a4/

[1] Madariaga R., “Dynamics of an expanding circular fault”, Bull. Seism. Soc. Am., 65 (1976), 163–182

[2] Virieux J., “SH-wave propagation in heterogeneous media: Velocity-stress finite-difference method”, Geophysics, 49 (1984), 1933–1942 | DOI

[3] Levander A. R., “Fourth-order finite difference P-SV seismograms”, Geophysics, 53 (1988), 1425–1436 | DOI

[4] Mora P., “Modeling anisotropic seismic waves in 3-D”, 59th Ann. Int. Mtg. Exploration Geophysicist, Expanded Articles, 1989, 1039–1043

[5] Moczo P, Kristek J., Vavrycuk V., Archuleta R. J., Halada L., “3D heterogeneous staggered-grid finite-difference modeling of seismic motion with volume harmonic and arithmetic averaging of elastic moduli and densities”, Bull. Seism. Soc. Am., 92 (2002), 3042–3066 | DOI

[6] Tessmer E., “3-D Seismic modeling of general material anisotropy in the presence of the free surface by Chebyshev spectral method”, Geophysical Journal International, 59 (1995), 464–473

[7] Kaser M., Igel H., “A comparative study of explicit differential operators on arbitrary grids”, J. Comput. Acoustics, 9 (2011), 1111–1125 | DOI | MR

[8] Carcione J. M., “The wave equation in generalised coordinates”, Geophysics, 59 (1994), 1911–1919 | DOI

[9] Tessmer E., Kosloff D., “3-D Elastic modeling with surface topography by a Chebyshev spectral method”, Geophysics, 59 (1994), 464–473 | DOI

[10] Igel H., “Wave propagation in three-dimensional spherical sections by Chebyshev spectral method”, Geophys. J. Int., 136 (1999), 559–566 | DOI

[11] Priolo E., Carcione J. M., Seriani G., “Numerical simulation of interface waves by high-order spectral modeling techniques”, J. Acoust. Soc. Am., 95 (1994), 681–693 | DOI

[12] Komatitsch D., Vilotte J. P., “The spectral-element method: an efficient tool to simulate the seismic response of 2D and 3D geological structures”, Bull. Seism. Soc. Am., 88 (1998), 368–392

[13] Seriani G., “3-D large-scale wave propagation modeling by a spectral-element method on a Cray T3E multiprocessor”, Comput. Methods Appl. Mech. Eng., 164 (1998), 235–247 | DOI

[14] Kvasov I. E., Petrov I. B., Chelnokov F. B., “Raschet volnovykh protsessov v neodnorodnykh prostranstvennykh konstruktsiyakh”, Matem. modelirovanie, 21:5 (2009), 3–9

[15] Petrov I. B., Favorskaya A. V., Sannikov A. V., Kvasov I. E., “Grid-characteristic method using high-order interpolation on tetrahedral hierarchical meshes with a multiple time step”, Math. Models and Comput. Simulations, 5:5 (2013), 409–415 | DOI

[16] Golubev V. I., Kvasov I. E., Petrov I. B., “Influence of natural disasters on ground facilities”, Math. Models and Comput. Simulations, 4:2 (2012), 129–134 | DOI

[17] Golubev V. I., Petrov I. B., Khokhlov N. I., “Numerical simulation of seismic activity by the grid-characteristic method”, Computat. Math. and Math. Phys., 53:10 (2013), 1523–1533 | DOI | MR

[18] Favorskaya A. V., Petrov I. B., Golubev V. I., Khokhlov N. I., “Chislennoe modelirovanie setochno-kharakteristicheskim metodom vozdeistviya zemletryasenii na sooruzheniya”, Matem. modelirovanie, 27:12 (2015), 109–120 | MR

[19] Novatskii V., Teoriya uprugosti, Mir, M., 1975 | MR

[20] Novatskii V., Volnovye zadachi teorii plastichnosti, Mir, M., 1978

[21] Harten Ami, “High resolution schemes for hyperbolic conservation laws”, J. Comput. Phys., 135:2 (1997), 260–278 | DOI | MR

[22] Petrov I. B., Khokhlov N. I., “Sravnenie TVD limiterov dlia chislennogo resheniia uravnenij dinamiki deformiruemogo tverdogo tela setochno-harakteristicheskim metodom”, Matematicheskie modeli i zadachi upravleniia, Sbornik nauchnyh trudov, 2011, 104–111

[23] Roe P. L., “Characteristic-based schemes for the Euler equations”, Annual Review of Fluid Mechanics, 1986, no. 18, 337–365 | DOI | MR

[24] Leveque R. J., Finite volume methods for hyperbolic problems, London Cambridge University Press, 2004 | MR