@article{ZVMMF_2017_57_11_a4,
author = {I. B. Petrov and A. V. Favorskaya and N. I. Khokhlov},
title = {Grid-characteristic method on embedded hierarchical grids and its application in the study of seismic waves},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1804--1811},
year = {2017},
volume = {57},
number = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_11_a4/}
}
TY - JOUR AU - I. B. Petrov AU - A. V. Favorskaya AU - N. I. Khokhlov TI - Grid-characteristic method on embedded hierarchical grids and its application in the study of seismic waves JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2017 SP - 1804 EP - 1811 VL - 57 IS - 11 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_11_a4/ LA - ru ID - ZVMMF_2017_57_11_a4 ER -
%0 Journal Article %A I. B. Petrov %A A. V. Favorskaya %A N. I. Khokhlov %T Grid-characteristic method on embedded hierarchical grids and its application in the study of seismic waves %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2017 %P 1804-1811 %V 57 %N 11 %U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_11_a4/ %G ru %F ZVMMF_2017_57_11_a4
I. B. Petrov; A. V. Favorskaya; N. I. Khokhlov. Grid-characteristic method on embedded hierarchical grids and its application in the study of seismic waves. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 11, pp. 1804-1811. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_11_a4/
[1] Madariaga R., “Dynamics of an expanding circular fault”, Bull. Seism. Soc. Am., 65 (1976), 163–182
[2] Virieux J., “SH-wave propagation in heterogeneous media: Velocity-stress finite-difference method”, Geophysics, 49 (1984), 1933–1942 | DOI
[3] Levander A. R., “Fourth-order finite difference P-SV seismograms”, Geophysics, 53 (1988), 1425–1436 | DOI
[4] Mora P., “Modeling anisotropic seismic waves in 3-D”, 59th Ann. Int. Mtg. Exploration Geophysicist, Expanded Articles, 1989, 1039–1043
[5] Moczo P, Kristek J., Vavrycuk V., Archuleta R. J., Halada L., “3D heterogeneous staggered-grid finite-difference modeling of seismic motion with volume harmonic and arithmetic averaging of elastic moduli and densities”, Bull. Seism. Soc. Am., 92 (2002), 3042–3066 | DOI
[6] Tessmer E., “3-D Seismic modeling of general material anisotropy in the presence of the free surface by Chebyshev spectral method”, Geophysical Journal International, 59 (1995), 464–473
[7] Kaser M., Igel H., “A comparative study of explicit differential operators on arbitrary grids”, J. Comput. Acoustics, 9 (2011), 1111–1125 | DOI | MR
[8] Carcione J. M., “The wave equation in generalised coordinates”, Geophysics, 59 (1994), 1911–1919 | DOI
[9] Tessmer E., Kosloff D., “3-D Elastic modeling with surface topography by a Chebyshev spectral method”, Geophysics, 59 (1994), 464–473 | DOI
[10] Igel H., “Wave propagation in three-dimensional spherical sections by Chebyshev spectral method”, Geophys. J. Int., 136 (1999), 559–566 | DOI
[11] Priolo E., Carcione J. M., Seriani G., “Numerical simulation of interface waves by high-order spectral modeling techniques”, J. Acoust. Soc. Am., 95 (1994), 681–693 | DOI
[12] Komatitsch D., Vilotte J. P., “The spectral-element method: an efficient tool to simulate the seismic response of 2D and 3D geological structures”, Bull. Seism. Soc. Am., 88 (1998), 368–392
[13] Seriani G., “3-D large-scale wave propagation modeling by a spectral-element method on a Cray T3E multiprocessor”, Comput. Methods Appl. Mech. Eng., 164 (1998), 235–247 | DOI
[14] Kvasov I. E., Petrov I. B., Chelnokov F. B., “Raschet volnovykh protsessov v neodnorodnykh prostranstvennykh konstruktsiyakh”, Matem. modelirovanie, 21:5 (2009), 3–9
[15] Petrov I. B., Favorskaya A. V., Sannikov A. V., Kvasov I. E., “Grid-characteristic method using high-order interpolation on tetrahedral hierarchical meshes with a multiple time step”, Math. Models and Comput. Simulations, 5:5 (2013), 409–415 | DOI
[16] Golubev V. I., Kvasov I. E., Petrov I. B., “Influence of natural disasters on ground facilities”, Math. Models and Comput. Simulations, 4:2 (2012), 129–134 | DOI
[17] Golubev V. I., Petrov I. B., Khokhlov N. I., “Numerical simulation of seismic activity by the grid-characteristic method”, Computat. Math. and Math. Phys., 53:10 (2013), 1523–1533 | DOI | MR
[18] Favorskaya A. V., Petrov I. B., Golubev V. I., Khokhlov N. I., “Chislennoe modelirovanie setochno-kharakteristicheskim metodom vozdeistviya zemletryasenii na sooruzheniya”, Matem. modelirovanie, 27:12 (2015), 109–120 | MR
[19] Novatskii V., Teoriya uprugosti, Mir, M., 1975 | MR
[20] Novatskii V., Volnovye zadachi teorii plastichnosti, Mir, M., 1978
[21] Harten Ami, “High resolution schemes for hyperbolic conservation laws”, J. Comput. Phys., 135:2 (1997), 260–278 | DOI | MR
[22] Petrov I. B., Khokhlov N. I., “Sravnenie TVD limiterov dlia chislennogo resheniia uravnenij dinamiki deformiruemogo tverdogo tela setochno-harakteristicheskim metodom”, Matematicheskie modeli i zadachi upravleniia, Sbornik nauchnyh trudov, 2011, 104–111
[23] Roe P. L., “Characteristic-based schemes for the Euler equations”, Annual Review of Fluid Mechanics, 1986, no. 18, 337–365 | DOI | MR
[24] Leveque R. J., Finite volume methods for hyperbolic problems, London Cambridge University Press, 2004 | MR