On the construction of quadrature rules for Laplace transform inversion
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 11, pp. 1782-1787 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For Laplace transform inversion, a method for constructing quadrature rules of the highest degree of accuracy based on an asymptotic distribution of roots of special orthogonal polynomials on the complex plane is proposed.
@article{ZVMMF_2017_57_11_a2,
     author = {A. V. Lebedeva and V. M. Ryabov},
     title = {On the construction of quadrature rules for {Laplace} transform inversion},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1782--1787},
     year = {2017},
     volume = {57},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_11_a2/}
}
TY  - JOUR
AU  - A. V. Lebedeva
AU  - V. M. Ryabov
TI  - On the construction of quadrature rules for Laplace transform inversion
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2017
SP  - 1782
EP  - 1787
VL  - 57
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_11_a2/
LA  - ru
ID  - ZVMMF_2017_57_11_a2
ER  - 
%0 Journal Article
%A A. V. Lebedeva
%A V. M. Ryabov
%T On the construction of quadrature rules for Laplace transform inversion
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2017
%P 1782-1787
%V 57
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_11_a2/
%G ru
%F ZVMMF_2017_57_11_a2
A. V. Lebedeva; V. M. Ryabov. On the construction of quadrature rules for Laplace transform inversion. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 11, pp. 1782-1787. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_11_a2/

[1] Ditkin V. A., Prudnikov A. P., Integralnye preobrazovaniya i operatsionnoe ischislenie, M., 1961 | MR

[2] Krylov V. I., Skoblya N. S., Metody priblizhennogo preobrazovaniya Fure i obrascheniya preobrazovaniya Laplasa, M., 1974

[3] Krylov V. I., Skoblya N. S., Spravochnaya kniga po chislennomu obrascheniyu preobrazovaniya Laplasa, Minsk, 1968 | MR

[4] Poroshina N. I., Ryabov V. M., “O metodakh obrascheniya preobrazovaniya Laplasa”, Vestnik S-Peterb. un-ta. Ser. 1, 2011, no. 3, 55–64 | MR

[5] Cohen A. M., Numerical methods for Laplace transform inversion, Berlin, 2007 | MR

[6] Ryabov V. M., Chislennoe obraschenie preobrazovaniya Laplasa, SPb., 2013

[7] Widder D. V., The Laplace transform, Princeton, 1946 | MR

[8] Lavrentev M. A., Shabat B. V., Metody teorii funktsii kompleksnogo peremennogo, M., 2002 | MR

[9] Lure A. I., Operatsionnoe ischislenie i ego prilozhenie k zadacham mekhaniki, M.–L., 1951 | MR

[10] Slepyan L. I., Yakovlev Yu. S., Integralnye preobrazovaniya v nestatsionarnykh zadachakh mekhaniki, L., 1980 | MR

[11] Krylov V. I., Priblizhennoe vychislenie integralov, M., 1967 | MR

[12] Suetin P. K., Klassicheskie ortogonalnye mnogochleny, M., 1979 | MR

[13] Luke Y., The special functions and their approximations, v. 2, New York, 1969 | MR

[14] Bruin M. G., Saff E. B., Varga R. S., “On the zeros of generalised Bessel polynomials. I, II”, Indagat. math., 43:1 (1981), 1–25 | DOI | MR

[15] Sege G., Ortogonalnye mnogochleny, M., 1962

[16] Stroud A. H., Secrest D., Gaussian quadrature formulas, New York, 1966 | MR