A multithreaded OpenMP implementation of the LU-SGS method using the multilevel decomposition of the unstructured computational mesh
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 11, pp. 1895-1905 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new parallel version of the method LU-SGS (Lower-upper symmetric Gauss-Seidel) based on a multilevel decomposition of the unstructured computational mesh is proposed. The advantages of the proposed approach are demonstrated by computing the supersonic flow around the RAM-C geometry. The method is well scalable when a large number of threads are used on the processor Intel Xeon Phi.
@article{ZVMMF_2017_57_11_a11,
     author = {M. N. Petrov and V. A. Titarev and S. V. Utyuzhnikov and A. V. Chikitkin},
     title = {A multithreaded {OpenMP} implementation of the {LU-SGS} method using the multilevel decomposition of the unstructured computational mesh},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1895--1905},
     year = {2017},
     volume = {57},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_11_a11/}
}
TY  - JOUR
AU  - M. N. Petrov
AU  - V. A. Titarev
AU  - S. V. Utyuzhnikov
AU  - A. V. Chikitkin
TI  - A multithreaded OpenMP implementation of the LU-SGS method using the multilevel decomposition of the unstructured computational mesh
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2017
SP  - 1895
EP  - 1905
VL  - 57
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_11_a11/
LA  - ru
ID  - ZVMMF_2017_57_11_a11
ER  - 
%0 Journal Article
%A M. N. Petrov
%A V. A. Titarev
%A S. V. Utyuzhnikov
%A A. V. Chikitkin
%T A multithreaded OpenMP implementation of the LU-SGS method using the multilevel decomposition of the unstructured computational mesh
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2017
%P 1895-1905
%V 57
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_11_a11/
%G ru
%F ZVMMF_2017_57_11_a11
M. N. Petrov; V. A. Titarev; S. V. Utyuzhnikov; A. V. Chikitkin. A multithreaded OpenMP implementation of the LU-SGS method using the multilevel decomposition of the unstructured computational mesh. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 11, pp. 1895-1905. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_11_a11/

[1] “Men'shov I. S., Nakamura Y.”, A collection of technical papers of 6th Int. Symp. on CFD (Lake Tahoe, Nevada, 1995), v. 2, 815

[2] “Men'shov I. S., Nakamura Y.”, Computers and Fluids, 29:6 (2000), 595–616 | DOI

[3] Sharov D., Luo H., Baum J. D., Löhner R., “Implementation of unstructured grid GMRES + LU-SGS method on shared-memory, cache-based parallel computers”, Aerospace Sciences Meeting and Exhibit, 38th (Reno, NV, 2000), 2000, AIAA-2000-927, 10–13

[4] Wissink A. M., Lyrintzis A. S., Strawn R. C., “Parallelization of a three-dimensional flow solver for euler rotorcraft aerodynamics predictions”, AIAA Journal, 34:11 (1996), 2276–2283 | DOI

[5] Borisov V. E., Davydov A. A., Kudryashov I. Yu., Lutskii A. E., Menshov I. S., “Parallelnaya realizatsiya neyavnoi skhemy na osnove metoda lu-sgs dlya modelirovaniya trekhmernykh turbulentnykh techenii”, Matem. modelirovanie, 26:10 (2014), 64–78

[6] Titarev V. A., Utyuzhnikov S. V., Chikitkin A. V., “Openmp + mpi parallelnaya realizatsiya chislennogo metoda dlya resheniya kineticheskogo uravneniya”, Zh. vychisl. matem. i matem. fiz., 56:11 (2016), 134–144

[7] Cheng M., Wang G., Mian H. H., “Reordering of hybrid unstructured grids for an implicit navier-stokes solver based on penmp parallelization”, Computers and Fluids, 110 (2015), 245–253 | DOI | MR

[8] Otero E., Eliasson P., “Accelaration on stretched meshes with line-implicit lu-sgs in parallel implementation”, International J. Comput. Fluid Dynamics, 29:2 (2015), 133–149 | DOI | MR

[9] Pavlukhin P. V., “Realizatsiya parallelnogo metoda lu-sgs dlya zadach gazovoi dinamiki na klasternykh sistemakh s graficheskimi uskoritelyami”, Vestnik Nizhegorodskogo un-ta im. N.I. Lobachevskogo, 1:1 (2013), 213–218

[10] Kulikovskii A. G., Pogorelov N. V., Semenov A. Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, Fizmatlit, M., 2001 | MR

[11] Toro E. F., Riemann solvers and numerical method for fluid dynamics, Springer-Verlag, 2009 | MR

[12] Mitchell C. R., Improved reconstruction schemes for the Navier-Stokes equations on unstructured meshes, AIAA-94-0642, 1994

[13] Frink Neal T., Assessment of an unstructured-grid method for predicting 3-d turbulent viscous flows, AIAA-96-0292, 1996

[14] Dumbser M., Titarev V. A., Utyuzhnikov S. V., “Neyavnyi mnogoblochnyi metod resheniya kineticheskogo uravneniya na nestrukturirovannykh setkakh”, Zh. vychisl. matem. i matem. fiz., 53:5 (2013), 762–782 | MR

[15] Titarev V. A., Dumbser M., Utyuzhnikov S., “V Construction and comparison of parallel implicit kinetic solvers in three spatial dimensions”, J. Comput. Phys., 256 (2014), 17–33 | DOI | MR

[16] Zheleznyakov A. O., Bogdanov P. B., Chetverushkin B. N., Gorobets A. V., Sukov S. A., “Rasshirenie dvukhurovnevogo rasparallelivaniya MPI + Open MP posredstvom OpenCL dlya gazodinamicheskikh raschetov na geterogennykh sistemakh”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 2011, no. 9, 76–86

[17] Gorobets A. V., “Parallelnaya tekhnologiya chislennogo modelirovaniya zadach gazovoi dinamiki algoritmami povyshennoi tochnosti”, Zh. vychisl. matem. i matem. fiz., 55:4 (2015), 641–652 | DOI | MR

[18] Karypis G, Kumar V., “Multilevel k-way partitioning scheme for irregular graphs”, J. Parallel Distrib. Comput., 48 (1998), 96–129 | DOI | MR

[19] Kaporin I. E., Milyukova O. Yu., “Massivno-parallelnyi algoritm predobuslovlennogo metoda sopryazhennykh gradientov dlya chislennogo resheniya sistem lineinykh algebraicheskikh uravnenii”, Sb. trudov otdela problem prikladnoi optimizatsii VTs RAN, VTs RAN, M., 2011, 132–157

[20] Grasso F., Capano G., “Modeling of ionizing hypersonic flows in nonequilibrium”, J. Spacecraft and Rockets, 32:2 (1995), 217–224 | DOI