Model kinetic equation for polyatomic gases
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 11, pp. 1882-1894 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A model kinetic equation is proposed for describing the dynamics of polyatomic gases. The numerical solution of the plane shock structure problem is used to compare it with the $R$-model. The numerical results are in satisfactory agreement. The model proposed is efficient in the terms of the number of computational operations.
@article{ZVMMF_2017_57_11_a10,
     author = {Yu. A. Nikitchenko},
     title = {Model kinetic equation for polyatomic gases},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1882--1894},
     year = {2017},
     volume = {57},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_11_a10/}
}
TY  - JOUR
AU  - Yu. A. Nikitchenko
TI  - Model kinetic equation for polyatomic gases
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2017
SP  - 1882
EP  - 1894
VL  - 57
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_11_a10/
LA  - ru
ID  - ZVMMF_2017_57_11_a10
ER  - 
%0 Journal Article
%A Yu. A. Nikitchenko
%T Model kinetic equation for polyatomic gases
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2017
%P 1882-1894
%V 57
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_11_a10/
%G ru
%F ZVMMF_2017_57_11_a10
Yu. A. Nikitchenko. Model kinetic equation for polyatomic gases. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 11, pp. 1882-1894. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_11_a10/

[1] Shakhov E. M., Metod issledovaniya dvizhenii razrezhennogo gaza, Nauka, M., 1975, 207 pp.

[2] Galkin V. S., Rusakov S. V., “O tochnosti modelnykh kineticheskikh uravnenii”, Izv. AN SSSR. Mekhan. zhidkosti i gaza, 2016, no. 1, 105–114 | DOI | MR

[3] Holway L. H., “New statistical models in kinetic theory: methods of construction”, Phys. Fluids, 9:9 (1966), 1658–1673 | DOI

[4] Rykov V. A., “Modelnoe kineticheskoe uravnenie dlya gaza s vraschatelnymi stepenyami svobody”, Izv. AN SSSR. Mekhan. zhidkosti i gaza, 1975, no. 6, 107–115

[5] Larina I. N., Rykov V. A., “Prostranstvennoe obtekanie konicheskikh tel potokom razrezhennogo gaza”, Zh. vychisl. matem. i matem. fiz., 29:1 (1989), 110–117 | MR

[6] Rykov V. A., Titarev V. A., Shakhov E. M., “Struktura udarnoi volny v dvukhatomnom gaze na osnove kineticheskoi modeli”, Izv. RAN. Mekhan. zhidkosti i gaza, 2008, no. 2, 171–182

[7] Larina I. N., Rykov V. A., “Kineticheskaya model uravneniya Boltsmana dlya dvukhatomnogo gaza s vraschatelnymi stepenyami svobody”, Zh. vychisl. matem. i matem. fiz., 50:12 (2010), 2233–2245 | MR

[8] Nikitchenko Yu. A., Modeli neravnovesnykh techenii, Izd-vo MAI, M., 2013, 160 pp.

[9] Holtz T., Muntz E. P., “Molecular velocity distribution functions in an argon normal shock wave at Mach number 7”, Phys. Fluids, 26:9, September (1983), 2425–2436 | DOI

[10] Alsmeyer H., “Density profiles in argon and nitrogen shock waves measured by the absorption of an electron beam”, J. Fluid Mech., 74:3 (1976), 497–513 | DOI

[11] Robben F., Talbot L., “Experimental study of the rotational distribution function of nitrogen in a shock wave”, Phys. Fluids, 9:4 (1966), 653–662 | DOI

[12] Lordi J. A., Mates R. E., “Rotational relaxation in nonpolar diatomic gases”, Phys. Fluids, 13:2 (1970), 291–308 | DOI

[13] Erofeev A. I., “Issledovanie struktury udarnoi volny v azote na osnove traektornykh raschetov vzaimodeistviya molekul”, Izv. RAN. Mekhan. zhidkosti i gaza, 2002, no. 6, 134–147

[14] Forrest E., Lumpkin III, Chapman D. R., “Accuracy of the Burnett equations for hypersonic real gas flows”, J. Thermophysics and Heat Transfer., 6:3 (1992), 419–425 | DOI