On sharp estimates of the convergence of double Fourier–Bessel series
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 11, pp. 1765-1770 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of approximation of a differentiable function of two variables by partial sums of a double Fourier-Bessel series is considered. Sharp estimates of the rate of convergence of the double Fourier–Bessel series on the class of differentiable functions of two variables characterized by a generalized modulus of continuity are obtained. The proofs of four theorems on this issue, which can be directly applied to solving particular problems of mathematical physics, approximation theory, etc., are presented.
@article{ZVMMF_2017_57_11_a0,
     author = {V. A. Abilov and F. V. Abilova and M. K. Kerimov},
     title = {On sharp estimates of the convergence of double {Fourier{\textendash}Bessel} series},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1765--1770},
     year = {2017},
     volume = {57},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_11_a0/}
}
TY  - JOUR
AU  - V. A. Abilov
AU  - F. V. Abilova
AU  - M. K. Kerimov
TI  - On sharp estimates of the convergence of double Fourier–Bessel series
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2017
SP  - 1765
EP  - 1770
VL  - 57
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_11_a0/
LA  - ru
ID  - ZVMMF_2017_57_11_a0
ER  - 
%0 Journal Article
%A V. A. Abilov
%A F. V. Abilova
%A M. K. Kerimov
%T On sharp estimates of the convergence of double Fourier–Bessel series
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2017
%P 1765-1770
%V 57
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_11_a0/
%G ru
%F ZVMMF_2017_57_11_a0
V. A. Abilov; F. V. Abilova; M. K. Kerimov. On sharp estimates of the convergence of double Fourier–Bessel series. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 11, pp. 1765-1770. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_11_a0/

[1] Abilov V. A., Abilova F. V., Kerimov M. K., “Tochnye otsenki skorosti skhodimosti ryadov Fure-Besselya”, Zh. vychisl. matem. i matem. fiz., 55:6 (2015), 917–927 | DOI

[2] Abilov V. A., Abilov M. V., Kerimov M. K., “Tochnye otsenki skorosti skhodimosti dvoinykh ryadov Fure po klassicheskim ortogonalnym mnogochlenam”, Zh. vychisl. matem. i matem. fiz., 55:7 (2015), 1109–1117 | DOI

[3] Kerimov M. K., Selimkhanov E. V., “O tochnykh otsenkakh skorosti skhodimosti ryadov Fure dlya funktsii odnoi peremennoi v prostranstve $\mathbb{L}_2[-\pi, \pi]$”, Zh. vychisl. matem. i matem. fiz., 56:5 (2016), 730–741 | DOI

[4] Seregina E. V., Stepovich M. A., Makarenkov A. M., “Proektsionnyi metod Galerkina resheniya statsionarnogo differentsialnogo uravneniya diffuzii v polubeskonechnoi oblasti”, Zh. vychisl. matem. i matem. fiz., 57:5, 801–813 | MR

[5] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1987 | MR

[6] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1969 | MR

[7] Abilov V. A., Kerimov M. K., “Nekotorye otsenki pogreshnosti smeshannykh ryadov Fure-Besselya funktsii dvukh peremennykh”, Zh. vychisl. matem. i matem. fiz., 46:9 (2006), 1545–1565 | MR

[8] Abilov V. A., Abilova F. V., Abilov M. V., “Nekotorye obratnye teoremy priblizheniya funktsii summami Fure-Lagerra”, Izv. vuzov. Matem., 2010, no. 9, 3–9 | MR

[9] Abilov V. A., Abilova F. V., “Priblizhenie funktsii summami Fure-Besselya”, Izv. vuzov. Matem., 2001, no. 8, 3–9