Evolution to a steady state for a rarefied gas flowing from a tank into a vacuum through a plane channel
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 10, pp. 1722-1733 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A kinetic equation (S-model) is used to solve the nonstationary problem of a monatomic rarefied gas flowing from a tank of infinite capacity into a vacuum through a long plane channel. Initially, the gas is at rest and is separated from the vacuum by a barrier. The temperature of the channel walls is kept constant. The flow is found to evolve to a steady state. The time required for reaching a steady state is examined depending on the channel length and the degree of gas rarefaction. The kinetic equation is solved numerically by applying a conservative explicit finite-difference scheme that is firstorder accurate in time and second-order accurate in space. An approximate law is proposed for the asymptotic behavior of the solution at long times when the evolution to a steady state becomes a diffusion process.
@article{ZVMMF_2017_57_10_a9,
     author = {N. A. Konopel'ko and E. M. Shakhov},
     title = {Evolution to a steady state for a rarefied gas flowing from a tank into a vacuum through a plane channel},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1722--1733},
     year = {2017},
     volume = {57},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_10_a9/}
}
TY  - JOUR
AU  - N. A. Konopel'ko
AU  - E. M. Shakhov
TI  - Evolution to a steady state for a rarefied gas flowing from a tank into a vacuum through a plane channel
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2017
SP  - 1722
EP  - 1733
VL  - 57
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_10_a9/
LA  - ru
ID  - ZVMMF_2017_57_10_a9
ER  - 
%0 Journal Article
%A N. A. Konopel'ko
%A E. M. Shakhov
%T Evolution to a steady state for a rarefied gas flowing from a tank into a vacuum through a plane channel
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2017
%P 1722-1733
%V 57
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_10_a9/
%G ru
%F ZVMMF_2017_57_10_a9
N. A. Konopel'ko; E. M. Shakhov. Evolution to a steady state for a rarefied gas flowing from a tank into a vacuum through a plane channel. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 10, pp. 1722-1733. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_10_a9/

[1] Sharipov F., Seleznev V., “Data on internal rarefied gas flows”, J. Phys. Chem. Ref. Data, 27:3 (1998), 657–706 | DOI

[2] Sharipov F. M., Seleznev V. N., Dvizhenie razrezhennogo gaza v kanalakh i mikrokanalakh, UO RAN, Ekaterinburg, 2008, 230

[3] Titarev V. A., Shakhov E. M., “Effektivnyi metod resheniya zadachi o techenii razrezhennogo gaza v ploskom kanale bolshoi konechnoi dliny”, Zh. vychisl. matem. i matem. fiz., 52:2 (2012), 288–303

[4] Titarev V. A., “Rarefied gas flow in a plaanar channel by arbitrary pressure and temperature drops”, Internat. J. Heat and Mass Transfer., 55 (2012), 5916–5930 | DOI

[5] Sharipov F., “Transient flow of rarefied gas through a short tube”, Vacuum, 90 (2013), 25–30 | DOI

[6] Sharipov F., Graur I. A., “General appraoch to transient flows of rarefied gas through long capillaries”, Vacuum, 100 (2013), 22–25 | DOI

[7] Kloss Yu. Yu., Cheremisin F. G., Shuvalov P. V., “Reshenie uravneniya Boltsmana dlya nestatsionarnykh techenii s udarnymi volnami v uzkikh kanalakh”, Zh. vychisl. matem. i matem. fiz., 50:6 (2010), 1148–1158

[8] Zeitoun D. E., Graur I. A., Burtschell Y., Ivanov M. S., Kudrayvtsev A. N., Bondar Ye. A., “Continuum and kinetic simulation of shock wave propagation in long microchannel”, Rarefied Gas Dynamics, 26th Internat. Symposium on RGD (Melville, New York, 2009), AIP Conf. Proc., 1084, ed. T. Abe, 964–969

[9] Nobuya Mioshi, Shuhei Nagata, Ikuya Kinefuchi, Kazuya Shimizu, Shu Takagi, Yoichiro Matsumoto, “Development of ultra small shock tube for high energy molecular beam source”, 26th Internat. Symp. Rarefied Gas Dynamics, AIP Conf. Proc., 1084, Melville, New York, 2009, 557–562

[10] Larina I. N., Rykov V. A., Shakhov E. M., “Razvitie techeniya razrezhennogo gaza mezhdu parallelnymi plastinami iz-za nachalnogo razryva davleniya”, Dokl. AN, 343:4 (1995), 482–485

[11] Larina I. N., Rykov V. A., Shakhov E. M., “Nestatsionarnye techeniya razrezhennogo gaza mezhdu parallelnymi plastinami”, Izv. RAN. Mekhan. zhidkosti i gaza, 1997, no. 2, 165–173

[12] Konopelko N. A., Titarev V. A., Shakhov E. M., “Tormozhenie razrezhennogo gaza v ploskom kanale pri rasshirenii v vakuum”, Izv. RAN. Mekhan. zhidkosti i gaza, 2015, no. 2, 129–141

[13] Konopelko N. A., Titarev V. A., Shakhov E. M., “Nestatsionarnoe techenie razrezhennogo gaza v mikrokanale iz-za raspada razryva davleniya”, Zh. vychisl. matem. i matem. fiz., 56:3 (2016), 476–489 | DOI

[14] Shakhov E. M., Titarev V. A., “Non-stationary rarefied gas flow into vacuum from a circular pipe closed at one end”, Vacuum, 109 (2014), 284 | DOI

[15] Shakhov E. M., Titarev V. A., “Time-dependent rarefied gas flow into vacuum from a long circular pipe closed at one end”, Proc. of the 29th Internat. Symposium on Rarefied Gas Dynamics, AIP Conf. Proc., 1628, 2014, 1071–1078 | DOI

[16] Shakhov E. M., “Ob obobschenii kineticheskoi modeli Kruka”, Izv. AN SSSR. Mekhan. zhidkosti i gaza, 1968, no. 5, 142–145

[17] Kolgan V. P., “Primenenie printsipa minimalnykh znachenii proizvodnoi k postroeniyu konechnoraznostnykh skhem dlya rascheta razryvnykh reshenii uravnenii gazovoi dinamiki”, Uch. zap. TsAGI, III:6 (1972), 68–77

[18] Larina I. N., Rykov V. A., “Raschet techenii dvukhatomnogo razrezhennogo gaza cherez ploskii mikrokanal”, Zh. vychisl. matem. i matem. fiz., 52:4 (2012), 720–731

[19] Larina I. N., Rykov V. A., “Chislennoe issledovanie techenii dvukhatomnogo razrezhennogo gaza cherez ploskii kanal v vakuum”, Izv. RAN. Mekhan. zhidkosti i gaza, 2013, no. 3, 117–130