@article{ZVMMF_2017_57_10_a7,
author = {V. V. Kornev and A. P. Khromov},
title = {A mixed problem for an inhomogeneous wave equation with a summable potential},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1692--1707},
year = {2017},
volume = {57},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_10_a7/}
}
TY - JOUR AU - V. V. Kornev AU - A. P. Khromov TI - A mixed problem for an inhomogeneous wave equation with a summable potential JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2017 SP - 1692 EP - 1707 VL - 57 IS - 10 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_10_a7/ LA - ru ID - ZVMMF_2017_57_10_a7 ER -
%0 Journal Article %A V. V. Kornev %A A. P. Khromov %T A mixed problem for an inhomogeneous wave equation with a summable potential %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2017 %P 1692-1707 %V 57 %N 10 %U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_10_a7/ %G ru %F ZVMMF_2017_57_10_a7
V. V. Kornev; A. P. Khromov. A mixed problem for an inhomogeneous wave equation with a summable potential. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 10, pp. 1692-1707. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_10_a7/
[1] Burlutskaya M. Sh., Khromov A. P., “Rezolventnyi podkhod v metode Fure”, Dokl. AN, 458:2 (2014), 138–140 | DOI
[2] Burlutskaya M. Sh., Khromov A. P., “Rezolventnyi podkhod dlya volnovogo uravneniya”, Zh. vychisl. matem. i matem. fiz., 2015, no. 2, 229–241 | DOI
[3] Chernyatin V. A., Obosnovanie metoda Fure v smeshannoi zadache dlya uravnenii v chastnykh proizvodnykh, Izd-vo Mosk. un-ta, M., 1991
[4] Khromov A. P., “O klassicheskom reshenii odnoi smeshannoi zadachi dlya volnovogo uravneniya”, Izv. Sarat. un-ta. Nov. ser. Ser. Matem. Mekhan. Informatika, 15:1 (2015), 56–66
[5] Kornev V. V., Khromov A. P., “Rezolventnyi podkhod k metodu Fure v odnoi smeshannoi zadache dlya volnovogo uravneniya”, Zh. vychislit. matem. i matem. fiz., 55:4 (2015), 621–630 | DOI
[6] Kornev V. V., Khromov A. P., “Rezolventnyi podkhod v metode Fure dlya volnovogo uravneniya v nesamosopryazhennom sluchae”, Zh. vychisl. matem. i matem. fiz., 55:7 (2015), 1156–1157 | DOI
[7] Khromov A. P., “Povedenie formalnogo resheniya smeshannoi zadachi dlya volnovogo uravneniya”, Zh. vychisl. matem. i matem. fiz., 56:2 (2016), 239–251 | DOI
[8] Steklov V. A., Osnovnye zadachi matematicheskoi fiziki, Nauka, M., 1983
[9] Krylov A. N., O nekotorykh differentsialnykh uravneniyakh matematicheskoi fiziki, imeyuschikh prilozheniya v tekhnicheskikh voprosakh, GITTL, M.–L., 1950
[10] Naimark M. N., Lineinye differentsialnye operatory, Nauka, M., 1969
[11] Khromov A. P., “Povedenie formalnogo resheniya po metodu Fure volnovogo uravneniya s summiruemym potentsialom”, Dokl. AN, 467:4 (2016), 1–3
[12] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1967
[13] Khromov A. P., “O skhodimosti formalnogo resheniya po metodu Fure smeshannoi zadachi dlya prosteishego neodnorodnogo volnovogo uravneniya”, Sovremennye problemy teorii funktsii i ikh prilozheniya, Materialy 18-i mezhdunar. Sarat. zim. shk. (27 yanv.–3 fevr. 2016), OOO “Nauchnaya kniga”, Saratov, 2016, 310–311
[14] Danford N., Shvarts Dzh. T., Lineinye operatory. Obschaya teoriya, Mir, M., 1962
[15] Khromov A. P., “Smeshannaya zadacha dlya neodnorodnogo volnovogo uravneniya s summiruemym potentsialom”, Sovremennye metody teorii kraevykh zadach, Materialy mezhdunar. konf. Voronezh. vesen. matem. shk. “Pontryaginskie chteniya-XXVII” (3–9 maya 2016), Voronezh, Izdat. dom VGU, 2016, 277–281