A mixed problem for an inhomogeneous wave equation with a summable potential
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 10, pp. 1692-1707 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A mixed problem for an inhomogeneous wave equation with fixed ends in the case of a summable potential is studied. Using the Krylov method for acceleration of the convergence of Fourier series, a classical solution under minimal conditions on the initial data and a generalized solution in the case of quadratic summable initial data and perturbing function are obtained.
@article{ZVMMF_2017_57_10_a7,
     author = {V. V. Kornev and A. P. Khromov},
     title = {A mixed problem for an inhomogeneous wave equation with a summable potential},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1692--1707},
     year = {2017},
     volume = {57},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_10_a7/}
}
TY  - JOUR
AU  - V. V. Kornev
AU  - A. P. Khromov
TI  - A mixed problem for an inhomogeneous wave equation with a summable potential
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2017
SP  - 1692
EP  - 1707
VL  - 57
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_10_a7/
LA  - ru
ID  - ZVMMF_2017_57_10_a7
ER  - 
%0 Journal Article
%A V. V. Kornev
%A A. P. Khromov
%T A mixed problem for an inhomogeneous wave equation with a summable potential
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2017
%P 1692-1707
%V 57
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_10_a7/
%G ru
%F ZVMMF_2017_57_10_a7
V. V. Kornev; A. P. Khromov. A mixed problem for an inhomogeneous wave equation with a summable potential. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 10, pp. 1692-1707. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_10_a7/

[1] Burlutskaya M. Sh., Khromov A. P., “Rezolventnyi podkhod v metode Fure”, Dokl. AN, 458:2 (2014), 138–140 | DOI

[2] Burlutskaya M. Sh., Khromov A. P., “Rezolventnyi podkhod dlya volnovogo uravneniya”, Zh. vychisl. matem. i matem. fiz., 2015, no. 2, 229–241 | DOI

[3] Chernyatin V. A., Obosnovanie metoda Fure v smeshannoi zadache dlya uravnenii v chastnykh proizvodnykh, Izd-vo Mosk. un-ta, M., 1991

[4] Khromov A. P., “O klassicheskom reshenii odnoi smeshannoi zadachi dlya volnovogo uravneniya”, Izv. Sarat. un-ta. Nov. ser. Ser. Matem. Mekhan. Informatika, 15:1 (2015), 56–66

[5] Kornev V. V., Khromov A. P., “Rezolventnyi podkhod k metodu Fure v odnoi smeshannoi zadache dlya volnovogo uravneniya”, Zh. vychislit. matem. i matem. fiz., 55:4 (2015), 621–630 | DOI

[6] Kornev V. V., Khromov A. P., “Rezolventnyi podkhod v metode Fure dlya volnovogo uravneniya v nesamosopryazhennom sluchae”, Zh. vychisl. matem. i matem. fiz., 55:7 (2015), 1156–1157 | DOI

[7] Khromov A. P., “Povedenie formalnogo resheniya smeshannoi zadachi dlya volnovogo uravneniya”, Zh. vychisl. matem. i matem. fiz., 56:2 (2016), 239–251 | DOI

[8] Steklov V. A., Osnovnye zadachi matematicheskoi fiziki, Nauka, M., 1983

[9] Krylov A. N., O nekotorykh differentsialnykh uravneniyakh matematicheskoi fiziki, imeyuschikh prilozheniya v tekhnicheskikh voprosakh, GITTL, M.–L., 1950

[10] Naimark M. N., Lineinye differentsialnye operatory, Nauka, M., 1969

[11] Khromov A. P., “Povedenie formalnogo resheniya po metodu Fure volnovogo uravneniya s summiruemym potentsialom”, Dokl. AN, 467:4 (2016), 1–3

[12] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1967

[13] Khromov A. P., “O skhodimosti formalnogo resheniya po metodu Fure smeshannoi zadachi dlya prosteishego neodnorodnogo volnovogo uravneniya”, Sovremennye problemy teorii funktsii i ikh prilozheniya, Materialy 18-i mezhdunar. Sarat. zim. shk. (27 yanv.–3 fevr. 2016), OOO “Nauchnaya kniga”, Saratov, 2016, 310–311

[14] Danford N., Shvarts Dzh. T., Lineinye operatory. Obschaya teoriya, Mir, M., 1962

[15] Khromov A. P., “Smeshannaya zadacha dlya neodnorodnogo volnovogo uravneniya s summiruemym potentsialom”, Sovremennye metody teorii kraevykh zadach, Materialy mezhdunar. konf. Voronezh. vesen. matem. shk. “Pontryaginskie chteniya-XXVII” (3–9 maya 2016), Voronezh, Izdat. dom VGU, 2016, 277–281