Finding discontinuities in the coefficients of the linear nonstationary transport equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 10, pp. 1676-1691 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An X-ray tomography problem that is an inverse problem for the transport differential equation is set up and investigated. The absorption and single scattering of particles are taken into account. The transport equation is nonstationary (its coefficients and the unknown function depend on time), involves multiple energy levels, and its coefficients can undergo jump discontinuities with respect to the spatial variable (in other words, the medium in which the process proceeds is inhomogeneous). The sought object is the set on which the coefficients of the equation suffer a discontinuity, which corresponds to the search for the boundaries between the different substances composing the sensed medium.
@article{ZVMMF_2017_57_10_a6,
     author = {E. Yu. Balakina},
     title = {Finding discontinuities in the coefficients of the linear nonstationary transport equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1676--1691},
     year = {2017},
     volume = {57},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_10_a6/}
}
TY  - JOUR
AU  - E. Yu. Balakina
TI  - Finding discontinuities in the coefficients of the linear nonstationary transport equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2017
SP  - 1676
EP  - 1691
VL  - 57
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_10_a6/
LA  - ru
ID  - ZVMMF_2017_57_10_a6
ER  - 
%0 Journal Article
%A E. Yu. Balakina
%T Finding discontinuities in the coefficients of the linear nonstationary transport equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2017
%P 1676-1691
%V 57
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_10_a6/
%G ru
%F ZVMMF_2017_57_10_a6
E. Yu. Balakina. Finding discontinuities in the coefficients of the linear nonstationary transport equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 10, pp. 1676-1691. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_10_a6/

[1] Vladimirov V. S., “Matematicheskie zadachi odnoskorostnoi teorii perenosa chastits”, Tr. MIAN SSSR, 61, 1961, 3–158

[2] Germogenova T. A., Lokalnye svoistva resheniya uravneniya perenosa, Nauka, M., 1986

[3] Prilepko A. I., Ivankov A. L., “Obratnye zadachi opredeleniya koeffitsienta i pravoi chasti nestatsionarnogo mnogoskorostnogo uravneniya perenosa po pereopredeleniyu v tochke”, Differents. ur-niya, 22:5 (1985), 109–119

[4] Prilepko A. I., Ivankov A. L., “Obratnye zadachi opredeleniya koeffitsienta, indikatrisy rasseyaniya i pravoi chasti nestatsionarnogo mnogoskorostnogo uravneniya perenosa”, Differents. ur-niya, 22:1 (1985), 870–885

[5] Anikonov D. S., Kovtanyuk A. E., Prokhorov I. V., Ispolzovanie uravneniya perenosa v tomografii, Logos, M., 2000

[6] Anikonov D. S., Nazarov V. G., Prokhorov I. V., “Integrodifferentsialnyi indikator dlya zadachi kursnoi tomografii”, Sib. zhurnal industrialnoi matem., 17:2 (2014), 3–10

[7] Balakina E. Yu., “Neklassicheskaya kraevaya zadacha dlya uravneniya perenosa”, Differents. ur-niya, 4:9 (2009), 1219–1228

[8] Anikonov D. S., Balakina E. Yu., “Polikhromaticheskii indikator neodnorodnosti neizvestnoi sredy dlya zadachi rentgenovskoi tomografii”, Sib. matem. zhurnal, 53:4 (2012), 721–740

[9] Balakina E. Yu., “Suschestvovanie i edinstvennost resheniya dlya nestatsionarnogo uravneniya perenosa”, Sib. zhurnal industrialnoi matem., 18:4 (2015), 3–8