On one method for the analysis of the Cauchy problem for a singularly perturbed inhomogeneous second-order linear differential equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 10, pp. 1661-1675 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A sequence converging to the solution of the Cauchy problem for a singularly perturbed inhomogeneous second-order linear differential equation is constructed. This sequence is also asymptotic in the sense that the deviation (in the norm of the space of continuous functions) of its nth element from the solution of the problem is proportional to the $(n+1)$th power of the perturbation parameter. A similar sequence is constructed for the case of an inhomogeneous first-order linear equation, on the example of which the application of such a sequence to the justification of the asymptotics obtained by the method of boundary functions is demonstrated.
@article{ZVMMF_2017_57_10_a5,
     author = {E. E. Bukzhalev},
     title = {On one method for the analysis of the {Cauchy} problem for a singularly perturbed inhomogeneous second-order linear differential equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1661--1675},
     year = {2017},
     volume = {57},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_10_a5/}
}
TY  - JOUR
AU  - E. E. Bukzhalev
TI  - On one method for the analysis of the Cauchy problem for a singularly perturbed inhomogeneous second-order linear differential equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2017
SP  - 1661
EP  - 1675
VL  - 57
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_10_a5/
LA  - ru
ID  - ZVMMF_2017_57_10_a5
ER  - 
%0 Journal Article
%A E. E. Bukzhalev
%T On one method for the analysis of the Cauchy problem for a singularly perturbed inhomogeneous second-order linear differential equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2017
%P 1661-1675
%V 57
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_10_a5/
%G ru
%F ZVMMF_2017_57_10_a5
E. E. Bukzhalev. On one method for the analysis of the Cauchy problem for a singularly perturbed inhomogeneous second-order linear differential equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 10, pp. 1661-1675. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_10_a5/

[1] Tikhonov A. N., Vasileva A. V., Sveshnikov A. G., Differentsialnye uravneniya. Kurs vysshei matematiki i mat. fiziki, Ucheb. dlya vuzov, Nauka. Fizmatlit, M., 1998

[2] Kopachevskii N. D., Smolich V. P., Vvedenie v asimptoticheskie metody, Spetsialnyi kurs lektsii, TNU, Simferopol, 2009

[3] Vasileva A. V., Butuzov V. F., Asimptoticheskie razlozheniya reshenii singulyarno vozmuschennykh uravnenii, Fizmatlit, M., 1973

[4] Vasileva A. V., Butuzov V. F., Asimptoticheskie metody v teorii singulyarnykh vozmuschenii. Aktualnye voprosy prikladnoi i vychislitelnoi matematiki, Nauch.-teor. posobie, Vyssh. shk., M., 1990

[5] Boglaev Yu. P., Zhdanov A. V., Stelmakh V. G., “Ravnomernye priblizheniya k resheniyam nekotorykh singulyarno vozmuschennykh nelineinykh uravnenii”, Differents. ur-niya, 14:3 (1978), 395–406