The varying piecewise interpolation solution of the Cauchy problem for ordinary differential equations with iterative refinement
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 10, pp. 1641-1660 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A piecewise interpolation approximation of the solution to the Cauchy problem for ordinary differential equations (ODEs) is constructed on a set of nonoverlapping subintervals that cover the interval on which the solution is sought. On each interval, the function on the right-hand side is approximated by a Newton interpolation polynomial represented by an algebraic polynomial with numerical coefficients. The antiderivative of this polynomial is used to approximate the solution, which is then refined by analogy with the Picard successive approximations. Variations of the degree of the polynomials, the number of intervals in the covering set, and the number of iteration steps provide a relatively high accuracy of solving nonstiff and stiff problems. The resulting approximation is continuous, continuously differentiable, and uniformly converges to the solution as the number of intervals in the covering set increases. The derivative of the solution is also uniformly approximated. The convergence rate and the computational complexity are estimated, and numerical experiments are described. The proposed method is extended for the two-point Cauchy problem with given exact values at the endpoints of the interval.
@article{ZVMMF_2017_57_10_a4,
     author = {G. A. Dzhanunts and Ya. E. Romm},
     title = {The varying piecewise interpolation solution of the {Cauchy} problem for ordinary differential equations with iterative refinement},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1641--1660},
     year = {2017},
     volume = {57},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_10_a4/}
}
TY  - JOUR
AU  - G. A. Dzhanunts
AU  - Ya. E. Romm
TI  - The varying piecewise interpolation solution of the Cauchy problem for ordinary differential equations with iterative refinement
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2017
SP  - 1641
EP  - 1660
VL  - 57
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_10_a4/
LA  - ru
ID  - ZVMMF_2017_57_10_a4
ER  - 
%0 Journal Article
%A G. A. Dzhanunts
%A Ya. E. Romm
%T The varying piecewise interpolation solution of the Cauchy problem for ordinary differential equations with iterative refinement
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2017
%P 1641-1660
%V 57
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_10_a4/
%G ru
%F ZVMMF_2017_57_10_a4
G. A. Dzhanunts; Ya. E. Romm. The varying piecewise interpolation solution of the Cauchy problem for ordinary differential equations with iterative refinement. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 10, pp. 1641-1660. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_10_a4/

[1] Romm Ya. E., Dzhanunts G. A., “Kompyuternyi metod variruemoi kusochno-polinomialnoi approksimatsii funktsii i reshenii obyknovennykh differentsialnykh uravnenii”, Kibernetika i sistemnyi analiz, 2013, no. 3, 169–189

[2] Demidovich B. P., Maron I. A., Shuvalova E. Z., Chislennye metody analiza. Priblizhenie funktsii, differentsialnye i integralnye uravneniya, Lan, SPb., 2010, 400 pp.

[3] Dzyadyk V. K., “O primenenii lineinykh metodov k priblizheniyu polinomami reshenii obyknovennykh differentsialnykh uravnenii i integralnykh uravnenii Gammershteina”, Izvestiya AN SSSR. Ser. matem., 34:4 (1970), 827–848

[4] Afanasev A. P., Dzyuba S. M., Kirichenko M. A., Rubanov N. A., “Priblizhennoe analiticheskoe reshenie sistem obyknovennykh differentsialnykh uravnenii s polinomialnoi pravoi chastyu”, Zh. vychisl. matem. i matem. fiz., 53:2 (2013), 321–328 | DOI

[5] Afanasev A. P., Dzyuba S. M., “Metod postroeniya priblizhennykh analiticheskikh reshenii differentsialnykh uravnenii s polinomialnoi pravoi chastyu”, Zh. vychisl. matem. i matem. fiz., 55:10 (2015), 1694–1702 | DOI

[6] Awoyemi D. O., Kayode S. J., Adoghe L. O., “A five-step P-stable method for the numerical integration of third order ordinary differential equations”, American J. Comput. Math., 2014, no. 4, 119–126 | DOI

[7] Fatimah B. O., Senapon W. A., Adebowale A. M., “Solving ordinary differential equations with evolutionary algorithms”, Open J. Optimizat., 2015, no. 4, 69–73 | DOI

[8] Berezin I. S., Zhidkov N. P., Metody vychislenii, v. 2, Fizmatgiz, M., 1962, 640 pp.

[9] Kasti Dzh., Kalaba R., Metody pogruzheniya v prikladnoi matematike, Monografiya, Mir, M., 1976, 224 pp.

[10] Rikhtmaier R., Morton K., Raznostnye metody resheniya kraevykh zadach, Mir, M., 1972, 420 pp.

[11] Romm Ya. E., “Lokalizatsiya i ustoichivoe vychislenie nulei mnogochlena na osnove sortirovki. II”, Kibernetika i sistemnyi analiz, 2007, no. 2, 161–174

[12] Berezin I. S., Zhidkov N. P., Metody vychislenii, v. 1, Nauka, M., 1966, 632 pp.

[13] Romm Ya. E., Dzhanunts G. A., Kusochno-polinomialnye priblizheniya funktsii i reshenii differentsialnykh uravnenii v primenenii k modelyam periodicheskikh reaktsii, Izd-vo TGPI imeni A. P. Chekhova, Taganrog, 2013, 240 pp.

[14] Khairer E., Nersett S., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Nezhestkie zadachi, Mir, M., 1990, 512 pp.

[15] Romm Ya. E., Dzhanunts G. A., Kompyuternoe kusochno-interpolyatsionnoe reshenie odnotochechnoi i dvukhtochechnoi zadachi Koshi dlya obyknovennykh differentsialnykh uravnenii, Dep. v VINITI 05.04.16, No 57-V2016, In-t im. A.P. Chekhova (filial) "RGEU (RINKh)", Taganrog, 49 pp.

[16] Khairer E., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999, 685 pp.

[17] Novikov A. E., “Modifikatsiya metoda Runge-Kutty-Felberga sedmogo poryadka”, Molodezh i nauka, Sb. materialov Kh Yubileinoi Vseros. nauchno-tekhnich. konferentsii, Sibirskii federalnyi un-t, Krasnoyarsk, 2014 http://conf.sfu-kras.ru/sites/mn2014/directions.html

[18] Fehlberg E., “Klassische Runge-Kutta-Formeln funfter und siebenter Ordnung mit Schrittweitenkontrolle”, Computing, 1969, no. 4, 93–106 | DOI | MR