Iterative algorithm for minimizing a convex function at the intersection of a spherical surface and a convex compact set
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 10, pp. 1631-1640

Voir la notice de l'article provenant de la source Math-Net.Ru

A numerical algorithm for minimizing a convex function on the set-theoretic intersection of a spherical surface and a convex compact set is proposed. The idea behind the algorithm is to reduce the original minimization problem to a sequence of convex programming problems. Necessary extremum conditions are examined, and the convergence of the algorithm is analyzed.
@article{ZVMMF_2017_57_10_a3,
     author = {Yu. A. Chernyaev},
     title = {Iterative algorithm for minimizing a convex function at the intersection of a spherical surface and a convex compact set},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1631--1640},
     publisher = {mathdoc},
     volume = {57},
     number = {10},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_10_a3/}
}
TY  - JOUR
AU  - Yu. A. Chernyaev
TI  - Iterative algorithm for minimizing a convex function at the intersection of a spherical surface and a convex compact set
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2017
SP  - 1631
EP  - 1640
VL  - 57
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_10_a3/
LA  - ru
ID  - ZVMMF_2017_57_10_a3
ER  - 
%0 Journal Article
%A Yu. A. Chernyaev
%T Iterative algorithm for minimizing a convex function at the intersection of a spherical surface and a convex compact set
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2017
%P 1631-1640
%V 57
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_10_a3/
%G ru
%F ZVMMF_2017_57_10_a3
Yu. A. Chernyaev. Iterative algorithm for minimizing a convex function at the intersection of a spherical surface and a convex compact set. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 10, pp. 1631-1640. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_10_a3/