@article{ZVMMF_2017_57_10_a3,
author = {Yu. A. Chernyaev},
title = {Iterative algorithm for minimizing a convex function at the intersection of a spherical surface and a convex compact set},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1631--1640},
year = {2017},
volume = {57},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_10_a3/}
}
TY - JOUR AU - Yu. A. Chernyaev TI - Iterative algorithm for minimizing a convex function at the intersection of a spherical surface and a convex compact set JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2017 SP - 1631 EP - 1640 VL - 57 IS - 10 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_10_a3/ LA - ru ID - ZVMMF_2017_57_10_a3 ER -
%0 Journal Article %A Yu. A. Chernyaev %T Iterative algorithm for minimizing a convex function at the intersection of a spherical surface and a convex compact set %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2017 %P 1631-1640 %V 57 %N 10 %U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_10_a3/ %G ru %F ZVMMF_2017_57_10_a3
Yu. A. Chernyaev. Iterative algorithm for minimizing a convex function at the intersection of a spherical surface and a convex compact set. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 10, pp. 1631-1640. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_10_a3/
[1] Minnibaev T. F., Chernyaev Yu. A., “Iteratsionnyi algoritm resheniya zadachi matematicheskogo programmirovaniya s predvypuklymi ogranicheniyami”, Zh. vychisl. matem. i matem. fiz., 50:5 (2010), 832–835
[2] Chernyaev Yu. A., “Chislennyi algoritm resheniya zadachi matematicheskogo programmirovaniya s ogranicheniem v vide gladkoi poverkhnosti”, Zh. vychisl. matem. i matem. fiz., 56:3 (2016), 387–393 | DOI
[3] Chernyaev Yu. A., “Dva metoda minimizatsii vypuklykh funktsii na klasse nevypuklykh mnozhestv”, Zh. vychisl. matem. i matem. fiz., 48:10 (2008), 1802–1811
[4] Chernyaev Yu. A., “Iteratsionnyi metod minimizatsii vypukloi negladkoi funktsii na vypukloi gladkoi poverkhnosti”, Zh. vychisl. matem. i matem. fiz., 49:4 (2009), 611–615
[5] Golshtein E. G., Tretyakov N. V., Modifitsirovannye funktsii Lagranzha: Teoriya i metody optimizatsii, Nauka, M., 1989
[6] Golikov A. I., Zhadan V. G., “Iterativnye metody resheniya zadach nelineinogo programmirovaniya s ispolzovaniem modifitsirovannykh funktsii Lagranzha”, Zh. vychisl. matem. i matem. fiz., 20:4 (1980), 874–888
[7] Zhadan V. G., “Modifitsirovannye funktsii Lagranzha v nelineinom programmirovanii”, Zh. vychisl. matem. i matem. fiz., 22:2 (1982), 296–308
[8] Pshenichnyi B. N., Danilin Yu. M., Chislennye metody v ekstremalnykh zadachakh, Nauka, M., 1975
[9] Golikov A. I., Zhadan V. G., “Dve modifikatsii metoda linearizatsii v nelineinom programmirovanii”, Zh. vychisl. matem. i matem. fiz., 23:2 (1983), 314–325
[10] Antipin A. S., Nedich A., Yachimovich M., “Trekhshagovyi metod linearizatsii dlya zadach minimizatsii”, Izvestiya vuzov. Matematika, 1994, no. 12, 3–7
[11] Antipin A. S., Nedich A., Yachimovich M., “Dvukhshagovyi metod linearizatsii dlya zadach minimizatsii”, Zh. vychisl. matem. i matem. fiz., 36:4 (1996), 18–25
[12] Chernyaev Yu. A., “Skhodimost metoda proektsii gradienta dlya odnogo klassa nevypuklykh zadach matematicheskogo programmirovaniya”, Izv. vuzov. Matematika, 2005, no. 12, 76–79
[13] Chernyaev Yu. A., “Obobschenie metoda uslovnogo gradienta na odin klass nevypuklykh ekstremalnykh zadach”, Zh. vychisl. matem. i matem. fiz., 46:4 (2006), 576–582
[14] Chernyaev Yu. A., “Obobschenie metoda Nyutona na klass nevypuklykh zadach matematicheskogo programmirovaniya”, Izv. vuzov. Matematika, 2008, no. 1, 78–82
[15] Chernyaev Yu. A., “Obobschenie metoda proektsii gradienta i metoda Nyutona na ekstremalnye zadachi s ogranicheniem v vide gladkoi poverkhnosti”, Zh. vychisl. matem. i matem. fiz., 55:9 (2015), 1493–1502 | DOI
[16] Vasilev F. P., Chislennye metody resheniya ekstremalnykh zadach, Nauka, M., 1980
[17] Dulliev A. M., Zabotin V. I., “Iteratsionnyi algoritm proektirovaniya tochki na nevypukloe mnogoobrazie v lineinom normirovannom prostranstve”, Zh. vychisl. matem. i matem. fiz., 44:5 (2004), 827–830
[18] Zabotin V. I., Arutyunova N. K., “Dva algoritma otyskaniya proektsii tochki na nevypukloe mnozhestvo v normirovannom prostranstve”, Zh. vychisl. matem. i matem. fiz., 53:3 (2013), 344–349 | DOI
[19] Arutyunova N. K., Dulliev A. M., Zabotin V. I., “Algoritmy proektirovaniya tochki na poverkhnost urovnya nepreryvnoi na kompakte funktsii”, Zh. vychisl. matem. i matem. fiz., 54:9 (2014), 1448–1454 | DOI
[20] Loran P. Zh., Approksimatsiya i optimizatsiya, Mir, M., 1975
[21] Demyanov V. F., Vasilev L. V., Nedifferentsiruemaya optimizatsiya, Nauka, M., 1981