Method for taking into account gravity in free-surface flow simulation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 10, pp. 1748-1762 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A numerical algorithm that correctly takes into account the force of gravity in the presence of density discontinuities is constructed using unstructured collocated grids and splitting algorithms based on SIMPLE-type methods. A correct hydrostatic pressure field is obtained by explicitly extracting the gravity force contribution to the pressure equation and computing it using the solution of the gravity equilibrium problem for a two-phase medium. To ensure that the force of gravity is balanced by the pressure gradient in the case of a medium at rest, an algorithm is proposed according to which the pressure gradient in the equations of motion is replaced by a modification allowing for the force of gravity. Well-known free-surface problems are used to show that, in contrast to previously known algorithms, the proposed ones on unstructured meshes correctly predict hydrostatic pressure fields and do not yield velocity oscillations or free-surface distortions.
@article{ZVMMF_2017_57_10_a11,
     author = {V. R. Efremov and A. S. Kozelkov and A. V. Kornev and A. A. Kurkin and V. V. Kurulin and D. Yu. Strelets and N. V. Tarasova},
     title = {Method for taking into account gravity in free-surface flow simulation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1748--1762},
     year = {2017},
     volume = {57},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_10_a11/}
}
TY  - JOUR
AU  - V. R. Efremov
AU  - A. S. Kozelkov
AU  - A. V. Kornev
AU  - A. A. Kurkin
AU  - V. V. Kurulin
AU  - D. Yu. Strelets
AU  - N. V. Tarasova
TI  - Method for taking into account gravity in free-surface flow simulation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2017
SP  - 1748
EP  - 1762
VL  - 57
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_10_a11/
LA  - ru
ID  - ZVMMF_2017_57_10_a11
ER  - 
%0 Journal Article
%A V. R. Efremov
%A A. S. Kozelkov
%A A. V. Kornev
%A A. A. Kurkin
%A V. V. Kurulin
%A D. Yu. Strelets
%A N. V. Tarasova
%T Method for taking into account gravity in free-surface flow simulation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2017
%P 1748-1762
%V 57
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_10_a11/
%G ru
%F ZVMMF_2017_57_10_a11
V. R. Efremov; A. S. Kozelkov; A. V. Kornev; A. A. Kurkin; V. V. Kurulin; D. Yu. Strelets; N. V. Tarasova. Method for taking into account gravity in free-surface flow simulation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 10, pp. 1748-1762. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_10_a11/

[1] Batler T. M., Razvitie metoda LINC. Chislennye metody v mekhanike zhidkostei, Mir, M., 1973, 146–155

[2] Burago N. G., Chislennoe reshenie zadach MSS s podvizhnymi granitsami razdela, Dis. ... dokt. fiz.-matem. nauk, IPM RAN, M., 2003

[3] Lucy L. B., “A numerical approach to the testing of the fission hypothesis”, Astron. J., 82:12 (1977), 10131024

[4] Harlow F. H., Welch J. E., “Numerical calculation of time-dependent viscous incompressible flow”, Phys. Fluids, 8 (1965), 2182–2189 | DOI | MR

[5] Daly B. J., “A technique for including surface tension effects in hydrodynamic calculations”, J. Comput. Phys., 4 (1969), 97–117 | DOI

[6] Hirt C. W., Nichols B. D., “Volume of fluid (VOF) method for the dynamics of free boundaries”, J. Comput. Phys., 39 (1981), 201–226 | DOI

[7] Ubbink O., Numerical prediction of two fluid systems with sharp interfaces, PhD thesis, Imperial College, University of London, London, 1997

[8] Landau L. D., Lifshits V. M., Gidrodinamika, Nauka, M., 1988

[9] Ferziger J. H., Peric M., Computational method for fluid dynamics, Springer-Verlag, N.Y., 2002 | MR

[10] Jasak H., Error analysis and estimation for the finite volume method with applications to fluid flows, Department of Mechanical Engineering, Imperial College of Science, London, 1996

[11] Fletcher K., Vychislitelnye metody v dinamike zhidkostei v dvukh tomakh, Mir, M., 1991

[12] Rhie C. M., Chow W. L., “Numerical study of the turbulent flow past an airfoil with trailing edge separation”, AIAA Journal, 21 (1983), 1525–1532 | DOI

[13] Gu C. Y., Taylor C., Chin J. H., “Computation of flows with large body forces”, Numerical Methods in Laminar and Turbulent Flow, Pineridge Press, Swansea, 1991, 294–305 | MR

[14] Mencinger J., “An alternative finite volume discretization of body force field on collocated grid”, Finite Volume Method-Powerful Means of Engineering Design, 2012, 101–116

[15] Khrabryi A. I., Chislennoe modelirovanie nestatsionarnykh turbulentnykh techenii zhidkosti so svobodnoi poverkhnostyu, Dis. ... kand. fiz.-matem. nauk, SPbGU, SPb., 2015

[16] Majumdar S., “Role of underrelaxation in momentum interpolation for calculation of flow with nonstaggered grids”, Numer. Heat Transfer., 13 (1988), 125–132 | DOI

[17] Yatsevich S. V., Kurulin V. V., Rubtsova D. P., “O primenenii algoritma PISO v zadachakh dinamiki molekulyar-no-nesmeshivayuschikhsya zhidkostei”, Voprosy atomnoi nauki i tekhniki. Ser. Matematicheskoe modelirovanie fizicheskikh protsessov, 2015, no. 1, 16–29

[18] Khrabry A. I., Smirnov E. M., Zaytsev D. K., “Solving the convective transport equation with several high-resolution finite volume schemes. Test computations”, Computational Fluid Dynamics 2010, Springer-Verlag, Berlin–Heidelberg, 2011, 535–540 | DOI

[19] Kurkin A. A., Kozelkov A. S., Meleshkina D. P., “Polnostyu neyavnyi metod resheniya uravnenii Nave-Stoksa dlya rascheta mnogofaznykh techenii so svobodnoi poverkhnostyu”, Sbornik dokladov XI Vserossiiskogo s'ezda po fundamentalnym problemam teoreticheskoi i prikladnoi mekhaniki (Kazan, 20–24 avgusta 2015 goda), 2015, 1851–1852

[20] Kozelkov A. S., Kurkin A. A., Pelinovskii E. N., “Modelirovanie padeniya tela v vodu v razlichnykh usloviyakh na osnove chislennogo resheniya uravnenii Nave-Stoksa polnostyu neyavnym metodom”, Tr. Nizhegorodskogo gos. tekhn. un-ta im. R. E. Alekseeva, 2015, no. 3, 51–60

[21] Kozelkov A. S., Kurkin A. A., Pelinovskii E. N., Kurulin V. V., “Modelirovanie tsunami kosmogennogo proiskhozhdeniya v ramkakh uravnenii Nave-Stoksa s istochnikami razlichnykh tipov”, Izv. RAN. Mekhanika zhidkosti i gaza, 2015, no. 2, 142–150

[22] Kozelkov A. S., Kurkin A. A., Pelinovskii E. N., “Vliyanie ugla vkhoda tela v vodu na vysoty generiruemykh voln”, Izv. RAN. Mekhanika zhidkosti i gaza, 2016, no. 2, 166–176 | DOI

[23] Kozelkov A. S., Kurulin V. V., Tyatyushkina E. S., Kurkin A. A., Legchanov M. A., Tsibereva Yu. A., “Issledovanie primeneniya RANS modelei turbulentnosti dlya rascheta neizotermicheskikh techenii s nizkimi chislami Prandtlya”, Izv. RAN. Mekhanika zhidkosti i gaza, 2015, no. 4, 44–58

[24] Kozelkov A., Kuralin V., Emelyanov V., Tyatyushkina E., Volkov K., “Comparison of convective flux discretization schemes in detached-eddy simulation of turbulent flows on unstructured meshes”, Journal of Scientific Computing, 89 (2015), 1–16 | MR

[25] Kozelkov A. S., Kurulin V. V., “Chislennaya skhema dlya modelirovaniya turbulentnykh techenii neszhimaemoi zhidkosti s ispolzovaniem vikhrerazreshayuschikh podkhodov”, Zh. vychisl. matem. i matem. fiz., 55:7 (2015), 1255–1265 | DOI

[26] Kozelkov A. S., Kurkin A. A., Krutyakova O. L., Kurulin V. V., Tyatyushkina E. S., “Zonnyi RANS-LES podkhod na osnove algebraicheskoi modeli reinoldsovykh napryazhenii”, Izv. RAN. Mekhanika zhidkosti i gaza, 2015, no. 5, 24–33

[27] Pogosyan M. A., Savelevskikh E. P., Shagaliev P. M., Strelets D. Yu., Ryabov A. A., Kornev A. V., Deryugin Yu. N., Spiridonov V. F., Tsiberev K. V., “Primenenie otechestvennykh superkompyuternykh tekhnologii dlya sozdaniya perspektivnykh obraztsov aviatsionnoi tekhniki”, Zh. Ser. Matematicheskoe modelirovanie fizicheskikh protsessov, 2013, no. 2, 3–17

[28] Pogosyan M. A., Savelskikh E. P., Strelets D. Yu., Kornev A. V., “Otechestvennye superkompyuternye tekhnologii v aviatsionnoi promyshlennosti”, Nauka i tekhnologii v promyshlennosti, 2012, no. 2, 26–35

[29] Kozelkov A. S., Deryugin Yu. N., Lashkin S. V., Silaev D. P., Simonov P. G., “Realizatsiya metoda rascheta vyazkoi neszhimaemoi zhidkosti s ispolzovaniem mnogosetochnogo metoda na osnove algoritma SIMPLE v pakete programm LOGOS”, Voprosy atomnoi nauki i tekhniki. Matematicheskoe modelirovanie fizicheskikh protsessov, 2013, no. 4, 44–56

[30] Volkov K. N., Deryugin Yu. N., Emelyanov V. N., Karpenko A. G., Kozelkov A. S., Teterina I. V., Metody uskoreniya gazodinamicheskikh raschetov na nestrukturirovannykh setkakh, Fizmatlit, M., 2013

[31] Raad P. E., Chen S., Johnson D. B., “The introduction of micro cells to treat pressure in free surface fluid flow problems”, Journal of Fluids Engineering, 117 (1995), 683–690 | DOI