Numerical simulation of convective motion in an anisotropic porous medium and cosymmetry conservation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 10, pp. 1734-1747 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The onset of convection in a porous anisotropic rectangle occupied by a heat-conducting fluid heated from below is analyzed on the basis of the Darcy–Boussinesq model. It is shown that there are combinations of control parameters for which the system has a nontrivial cosymmetry and a one-parameter family of stationary convective regimes branches off from the mechanical equilibrium. For the two-dimensional convection equations in a porous medium, finite-difference approximations preserving the cosymmetry of the original system are developed. Numerical results are presented that demonstrate the formation of a family of convective regimes and its disappearance when the approximations do not inherit the cosymmetry property.
@article{ZVMMF_2017_57_10_a10,
     author = {M. A. Abdelhafez and V. G. Tsybulin},
     title = {Numerical simulation of convective motion in an anisotropic porous medium and cosymmetry conservation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1734--1747},
     year = {2017},
     volume = {57},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_10_a10/}
}
TY  - JOUR
AU  - M. A. Abdelhafez
AU  - V. G. Tsybulin
TI  - Numerical simulation of convective motion in an anisotropic porous medium and cosymmetry conservation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2017
SP  - 1734
EP  - 1747
VL  - 57
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_10_a10/
LA  - ru
ID  - ZVMMF_2017_57_10_a10
ER  - 
%0 Journal Article
%A M. A. Abdelhafez
%A V. G. Tsybulin
%T Numerical simulation of convective motion in an anisotropic porous medium and cosymmetry conservation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2017
%P 1734-1747
%V 57
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_10_a10/
%G ru
%F ZVMMF_2017_57_10_a10
M. A. Abdelhafez; V. G. Tsybulin. Numerical simulation of convective motion in an anisotropic porous medium and cosymmetry conservation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 10, pp. 1734-1747. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_10_a10/

[1] Nield D. A., Bejan A., Convection in Porous Media, 4th edn., Springer, New York, 2013 | MR

[2] Storesletten L., “Effects of anisotropy on convection in horizontal and inclined porous layers”, Emerging Technologies and Techniques in Porous Med, eds. Ingham D. B. et al., Kluwer, Dordrecht, 2004, 285–306 | DOI | MR

[3] Tyvand A. P., Storesletten L., “Onset of convection in an anisotropic porous layer with vertical principal axes”, Trans. Porous Med., 108 (2015), 581–593 | DOI | MR

[4] Lyubimov D. V., “O konvektivnykh dvizheniyakh v poristoi srede, podogrevaemoi snizu”, Prikl. matem. i tekhn. fiz., 1975, no. 2, 131–137

[5] Yudovich V. I., “Kosimmetriya, vyrozhdenie reshenii operatornykh uravnenii, vozniknovenie filtratsionnoi konvektsii”, Matem. zametki, 49:5 (1991), 142–148

[6] Yudovich V. I., “Secondary cycle of equilibria in a system with cosymmetry, its creation by bifurcation and impossibility of symmetric treatment of it”, Chaos, 5:2 (1995), 402–411 | DOI | MR

[7] Govorukhin V. N., “Chislennoe issledovanie poteri ustoichivosti vtorichnymi statsionarnymi rezhimami v zadache ploskoi konvektsii Darsi”, Dokl. RAN, 363:6 (1998), 772–774

[8] Karasözen B., Tsybulin V. G., “Finite-difference approximation and cosymmetry conservation in filtration convection problem”, Physics Letters A, 262 (1999), 321–329 | DOI | MR

[9] Karasözen B., Tsybulin V. G., “Mimetic discretization of two-dimensional Darcy convection”, Comput. Phys. Comm., 167 (2005), 203–213 | DOI

[10] Kantur O. Yu., Tsibulin V. G., “Spektralno-raznostnyi metod rascheta konvektivnykh dvizhenii zhidkosti v poristoi srede i sokhranenie kosimmetrii”, Zh. vychisl. matem. i matem. fiz., 42:6 (2002), 913–923

[11] Moiseenko B. D., Fryazinov I. V., “Polnostyu neitralnaya skhema dlya uravnenii Nave-Stoksa”, Izuchenie gidrodinamich. neustoichivosti chisl. metodami, IPM LNSIR, M., 1980, 186–209

[12] Arakawa A., “Computational design for long-term numerical integration of the equations of fluid motion: two-dimensional incompressible. Flow. Part 1”, J. Comput. Physics, 1 (1966), 119–143 | DOI | MR

[13] Morinishi Y., Lund T. S., Vasilyev O. V., Moin P., “Fully conservative higher order finite difference schemes for incompressible flow”, J. Comput. Phys., 143 (1998), 90–124 | DOI | MR

[14] Harlow F. H., Welch J. E., “Numerical calculation of time-dependent viscous incompressible flow of fuid with free surface”, Phys. Fluids, 8 (1965), 2182–2189 | DOI | MR

[15] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989, 616 pp.

[16] Yudovich V. I., “O bifurkatsiyakh pri vozmuscheniyakh, narushayuschikh kosimmetriyu”, Dokl. AN, 398:1 (2004), 57–61