A splitting algorithm for the wavelet transform of cubic splines on a nonuniform grid
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 10, pp. 1600-1614 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For cubic splines with nonuniform nodes, splitting with respect to the even and odd nodes is used to obtain a wavelet expansion algorithm in the form of the solution to a three-diagonal system of linear algebraic equations for the coefficients. Computations by hand are used to investigate the application of this algorithm for numerical differentiation. The results are illustrated by solving a prediction problem.
@article{ZVMMF_2017_57_10_a1,
     author = {Z. M. Sulaimanov and B. M. Shumilov},
     title = {A splitting algorithm for the wavelet transform of cubic splines on a nonuniform grid},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1600--1614},
     year = {2017},
     volume = {57},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_10_a1/}
}
TY  - JOUR
AU  - Z. M. Sulaimanov
AU  - B. M. Shumilov
TI  - A splitting algorithm for the wavelet transform of cubic splines on a nonuniform grid
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2017
SP  - 1600
EP  - 1614
VL  - 57
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_10_a1/
LA  - ru
ID  - ZVMMF_2017_57_10_a1
ER  - 
%0 Journal Article
%A Z. M. Sulaimanov
%A B. M. Shumilov
%T A splitting algorithm for the wavelet transform of cubic splines on a nonuniform grid
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2017
%P 1600-1614
%V 57
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_10_a1/
%G ru
%F ZVMMF_2017_57_10_a1
Z. M. Sulaimanov; B. M. Shumilov. A splitting algorithm for the wavelet transform of cubic splines on a nonuniform grid. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 10, pp. 1600-1614. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_10_a1/

[1] Dobeshi I., Desyat lektsii po veivletam, Per. s angl., NITs “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 2001

[2] Oseledets I. V., “Primenenie razdelennykh raznostei i B -splainov dlya postroeniya bystrykh diskretnykh preobrazovanii veivletovskogo tipa na neravnomernykh setkakh”, Matem. zametki, 77:7 (2005), 743–752 | DOI

[3] Makarov A. A., “Odin variant splain-veivletnogo razlozheniya prostranstv B-splainov”, Vestnik S-Peterb. un-ta. Ser. 10, 2009, no. 2, 59–71

[4] Zimin A. V., “Veivletnaya skhema, osnovannaya na approksimatsii kubicheskimi B-splainami na neravnomernoi setke”, Metody vychislenii, 23, 2008, 56–73

[5] Demyanovich Yu. K., “Kalibrovochnoe sootnoshenie dlya B-splainov na neravnomernoi setke”, Matem. modelirovanie, 13:9 (2001), 98–100

[6] Wang J., “Interpolating cubic spline wavelet packet on arbitrary partitions”, J. Computat. Analys. Applicat., 5:1 (2003), 179–193 | DOI | MR

[7] de Boor C., Fix G., “Spline approximation by quasi-interpolants”, J. Approx. Theory, 8 (1973), 19–45 | DOI | MR

[8] Stolnits E., DeRouz T., Salezin D., Veivlety v kompyuternoi grafike, Per. s angl., NITs “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 2002

[9] Koro K., Abe K., “Non-orthogonal spline wavelets for boundary element analysis”, Eng. Analys. with Boundary Elements, 25 (2001), 149–164 | DOI

[10] Lyche T., Møtrken K., Quak E., “Theory and algorithms for non-uniform spline wavelets”, Multivariate Approximation and Applications, eds. N. Dyn, D. Leviatan, D. Levin, A. Pinkus, Cambridge University Press, Cambridge, 2001, 152–187 | DOI | MR

[11] Cohen A., Daubechies I., Feauveau J.-C., “Biorthogonal bases of compactly supported wavelets”, Comm. Pure and Appl. Math., 45 (1992), 485–560 | DOI | MR

[12] Bittner K., A new view on biorthogonal spline wavelets, Preprint Series 2005-03, Universitat Ulm, 2005 | MR

[13] Ĉerná D., Finêk V., “Construction of optimally conditioned cubic spline wavelets on the interval”, Adv. Comput. Math., 34 (2011), 519–552 | DOI | MR

[14] Cerna D., Finek V., “Cubic spline wavelets with complementary boundary conditions”, Applied Mathemat. Comput., 219 (2012), 1853–1865 | DOI | MR

[15] Wang J., “Cubic spline wavelet bases of sobolev spaces and multilevel interpolation”, Applied and Comput. Harmonic Analys, 3:2 (1996), 154–163 | DOI | MR

[16] Cai W., Wang J., “Adaptive multiresolution collocation methods for initial boundary value problems of nonlinear PDEs”, SIAM J. Numerical Analys., 33:3 (1996), 937–970 | DOI | MR

[17] Kumar V., Mehra M., “Cubic spline adaptive wavelet scheme to solve singularly perturbed reaction diffusion problems”, Internat. J. Wavelets, Multiresolut. Informat. Proc., 5:2 (2007), 317–331 | DOI | MR

[18] Mehra M., Goyal K., “Algorithm 929: A suite on wavelet differentiation algorithms”, ACM Transact. on Math. Software, 39:4 (2013), 27 | DOI | MR

[19] Lyche T., Møtrken K., Pelosi F., “Stable, linear spline wavelets on nonuniform knots with vanishing moments”, Computer Aided Geometric Design, 26 (2009), 203–216 | DOI | MR

[20] Shumilov B. M., “Algoritm s rasschepleniem veivlet-preobrazovaniya ermitovykh kubicheskikh splainov”, Vestn. Tomskogo gos. un-ta. Ser. Matematika. Mekhanika, 2010, no. 4, 45–55

[21] Shumilov B. M., “Splain-approksimatsionnye skhemy, tochnye na mnogochlenakh”, Zh. vychisl. matem. i matem. fiz., 32:8 (1992), 1187–1196

[22] Ĉerná D., Finêk V., “Cubic spline wavelets with short support for fourth-order problems”, Appl. Math. Comput., 243 (2014), 44–56 | MR

[23] De Bor K., Prakticheskoe rukovodstvo po splainam, Radio i svyaz, M., 1985

[24] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980

[25] Jia R.-Q., Zhao W., “Riesz bases of wavelets and applications to numerical solutions of elliptic equations”, Math. Comput., 80:275 (2011), 1525–1556 | DOI | MR

[26] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978

[27] Morozov V. A., “Teoriya splainov i zadacha ustoichivogo vychisleniya znachenii neogranichennogo operatora”, Zh. vychisl. matem. i matem. fiz., 11:1 (1971), 545–558

[28] Shumilov B. M., “Algoritmy s rasschepleniem veivlet-preobrazovaniya splainov pervoi stepeni na neravnomernykh setkakh”, Zh. vychisl. matem. i matem. fiz., 56:7 (2016), 39–50