@article{ZVMMF_2017_57_10_a1,
author = {Z. M. Sulaimanov and B. M. Shumilov},
title = {A splitting algorithm for the wavelet transform of cubic splines on a nonuniform grid},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1600--1614},
year = {2017},
volume = {57},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_10_a1/}
}
TY - JOUR AU - Z. M. Sulaimanov AU - B. M. Shumilov TI - A splitting algorithm for the wavelet transform of cubic splines on a nonuniform grid JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2017 SP - 1600 EP - 1614 VL - 57 IS - 10 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_10_a1/ LA - ru ID - ZVMMF_2017_57_10_a1 ER -
%0 Journal Article %A Z. M. Sulaimanov %A B. M. Shumilov %T A splitting algorithm for the wavelet transform of cubic splines on a nonuniform grid %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2017 %P 1600-1614 %V 57 %N 10 %U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_10_a1/ %G ru %F ZVMMF_2017_57_10_a1
Z. M. Sulaimanov; B. M. Shumilov. A splitting algorithm for the wavelet transform of cubic splines on a nonuniform grid. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 10, pp. 1600-1614. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_10_a1/
[1] Dobeshi I., Desyat lektsii po veivletam, Per. s angl., NITs “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 2001
[2] Oseledets I. V., “Primenenie razdelennykh raznostei i B -splainov dlya postroeniya bystrykh diskretnykh preobrazovanii veivletovskogo tipa na neravnomernykh setkakh”, Matem. zametki, 77:7 (2005), 743–752 | DOI
[3] Makarov A. A., “Odin variant splain-veivletnogo razlozheniya prostranstv B-splainov”, Vestnik S-Peterb. un-ta. Ser. 10, 2009, no. 2, 59–71
[4] Zimin A. V., “Veivletnaya skhema, osnovannaya na approksimatsii kubicheskimi B-splainami na neravnomernoi setke”, Metody vychislenii, 23, 2008, 56–73
[5] Demyanovich Yu. K., “Kalibrovochnoe sootnoshenie dlya B-splainov na neravnomernoi setke”, Matem. modelirovanie, 13:9 (2001), 98–100
[6] Wang J., “Interpolating cubic spline wavelet packet on arbitrary partitions”, J. Computat. Analys. Applicat., 5:1 (2003), 179–193 | DOI | MR
[7] de Boor C., Fix G., “Spline approximation by quasi-interpolants”, J. Approx. Theory, 8 (1973), 19–45 | DOI | MR
[8] Stolnits E., DeRouz T., Salezin D., Veivlety v kompyuternoi grafike, Per. s angl., NITs “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 2002
[9] Koro K., Abe K., “Non-orthogonal spline wavelets for boundary element analysis”, Eng. Analys. with Boundary Elements, 25 (2001), 149–164 | DOI
[10] Lyche T., Møtrken K., Quak E., “Theory and algorithms for non-uniform spline wavelets”, Multivariate Approximation and Applications, eds. N. Dyn, D. Leviatan, D. Levin, A. Pinkus, Cambridge University Press, Cambridge, 2001, 152–187 | DOI | MR
[11] Cohen A., Daubechies I., Feauveau J.-C., “Biorthogonal bases of compactly supported wavelets”, Comm. Pure and Appl. Math., 45 (1992), 485–560 | DOI | MR
[12] Bittner K., A new view on biorthogonal spline wavelets, Preprint Series 2005-03, Universitat Ulm, 2005 | MR
[13] Ĉerná D., Finêk V., “Construction of optimally conditioned cubic spline wavelets on the interval”, Adv. Comput. Math., 34 (2011), 519–552 | DOI | MR
[14] Cerna D., Finek V., “Cubic spline wavelets with complementary boundary conditions”, Applied Mathemat. Comput., 219 (2012), 1853–1865 | DOI | MR
[15] Wang J., “Cubic spline wavelet bases of sobolev spaces and multilevel interpolation”, Applied and Comput. Harmonic Analys, 3:2 (1996), 154–163 | DOI | MR
[16] Cai W., Wang J., “Adaptive multiresolution collocation methods for initial boundary value problems of nonlinear PDEs”, SIAM J. Numerical Analys., 33:3 (1996), 937–970 | DOI | MR
[17] Kumar V., Mehra M., “Cubic spline adaptive wavelet scheme to solve singularly perturbed reaction diffusion problems”, Internat. J. Wavelets, Multiresolut. Informat. Proc., 5:2 (2007), 317–331 | DOI | MR
[18] Mehra M., Goyal K., “Algorithm 929: A suite on wavelet differentiation algorithms”, ACM Transact. on Math. Software, 39:4 (2013), 27 | DOI | MR
[19] Lyche T., Møtrken K., Pelosi F., “Stable, linear spline wavelets on nonuniform knots with vanishing moments”, Computer Aided Geometric Design, 26 (2009), 203–216 | DOI | MR
[20] Shumilov B. M., “Algoritm s rasschepleniem veivlet-preobrazovaniya ermitovykh kubicheskikh splainov”, Vestn. Tomskogo gos. un-ta. Ser. Matematika. Mekhanika, 2010, no. 4, 45–55
[21] Shumilov B. M., “Splain-approksimatsionnye skhemy, tochnye na mnogochlenakh”, Zh. vychisl. matem. i matem. fiz., 32:8 (1992), 1187–1196
[22] Ĉerná D., Finêk V., “Cubic spline wavelets with short support for fourth-order problems”, Appl. Math. Comput., 243 (2014), 44–56 | MR
[23] De Bor K., Prakticheskoe rukovodstvo po splainam, Radio i svyaz, M., 1985
[24] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980
[25] Jia R.-Q., Zhao W., “Riesz bases of wavelets and applications to numerical solutions of elliptic equations”, Math. Comput., 80:275 (2011), 1525–1556 | DOI | MR
[26] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978
[27] Morozov V. A., “Teoriya splainov i zadacha ustoichivogo vychisleniya znachenii neogranichennogo operatora”, Zh. vychisl. matem. i matem. fiz., 11:1 (1971), 545–558
[28] Shumilov B. M., “Algoritmy s rasschepleniem veivlet-preobrazovaniya splainov pervoi stepeni na neravnomernykh setkakh”, Zh. vychisl. matem. i matem. fiz., 56:7 (2016), 39–50