On some estimates for best approximations of bivariate functions by Fourier–Jacobi sums in the mean
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 10, pp. 1581-1599
Voir la notice de l'article provenant de la source Math-Net.Ru
Some problems in computational mathematics and mathematical physics lead to Fourier series expansions of functions (solutions) in terms of special functions, i.e., to approximate representations of functions (solutions) by partial sums of corresponding expansions. However, the errors of these approximations are rarely estimated or minimized in certain classes of functions. In this paper, the convergence rate (of best approximations) of a Fourier series in terms of Jacobi polynomials is estimated in classes of bivariate functions characterized by a generalized modulus of continuity. An approximation method based on “spherical” partial sums of series is substantiated, and the introduction of a corresponding class of functions is justified. A two-sided estimate of the Kolmogorov $N$-width for bivariate functions is given.
@article{ZVMMF_2017_57_10_a0,
author = {M. V. Abilov and M. K. Kerimov and E. V. Selimkhanov},
title = {On some estimates for best approximations of bivariate functions by {Fourier{\textendash}Jacobi} sums in the mean},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1581--1599},
publisher = {mathdoc},
volume = {57},
number = {10},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_10_a0/}
}
TY - JOUR AU - M. V. Abilov AU - M. K. Kerimov AU - E. V. Selimkhanov TI - On some estimates for best approximations of bivariate functions by Fourier–Jacobi sums in the mean JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2017 SP - 1581 EP - 1599 VL - 57 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_10_a0/ LA - ru ID - ZVMMF_2017_57_10_a0 ER -
%0 Journal Article %A M. V. Abilov %A M. K. Kerimov %A E. V. Selimkhanov %T On some estimates for best approximations of bivariate functions by Fourier–Jacobi sums in the mean %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2017 %P 1581-1599 %V 57 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_10_a0/ %G ru %F ZVMMF_2017_57_10_a0
M. V. Abilov; M. K. Kerimov; E. V. Selimkhanov. On some estimates for best approximations of bivariate functions by Fourier–Jacobi sums in the mean. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 57 (2017) no. 10, pp. 1581-1599. http://geodesic.mathdoc.fr/item/ZVMMF_2017_57_10_a0/