Simulation of collisionless ultrarelativistic electron-proton plasma dynamics in a self-consistent electromagnetic field
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 9, pp. 1635-1644 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The evolution of a collisionless electron-proton plasma in the self-consistent approximation is investigated. The plasma is assumed to move initially as a whole in a vacuum with the Lorentz factor. The behavior of the dynamical system is analyzed by applying a three-dimensional model based on the Vlasov–Maxwell equations with allowance for retarded potentials. It is shown that the analysis of the solution to the problem is not valid in the “center-of-mass frame” of the plasmoid (since it cannot be correctly defined for a relativistic plasma interacting via an electromagnetic field) and the transition to a laboratory frame of reference is required. In the course of problem solving, a chaotic electromagnetic field is generated by the plasma particles. As a result, the particle distribution functions in the phase space change substantially and differ from their Maxwell–Juttner form. Computations show that the kinetic energies of the electron and proton components and the energy of the self-consistent electromagnetic field become identical. A tendency to the isotropization of the particle momentum distribution in the direction of the initial plasmoid motion is observed.
@article{ZVMMF_2016_56_9_a9,
     author = {S. L. Ginzburg and V. F. Dyachenko and Yu. N. Orlov and N. N. Fimin and V. M. Chechetkin},
     title = {Simulation of collisionless ultrarelativistic electron-proton plasma dynamics in a self-consistent electromagnetic field},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1635--1644},
     year = {2016},
     volume = {56},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_9_a9/}
}
TY  - JOUR
AU  - S. L. Ginzburg
AU  - V. F. Dyachenko
AU  - Yu. N. Orlov
AU  - N. N. Fimin
AU  - V. M. Chechetkin
TI  - Simulation of collisionless ultrarelativistic electron-proton plasma dynamics in a self-consistent electromagnetic field
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 1635
EP  - 1644
VL  - 56
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_9_a9/
LA  - ru
ID  - ZVMMF_2016_56_9_a9
ER  - 
%0 Journal Article
%A S. L. Ginzburg
%A V. F. Dyachenko
%A Yu. N. Orlov
%A N. N. Fimin
%A V. M. Chechetkin
%T Simulation of collisionless ultrarelativistic electron-proton plasma dynamics in a self-consistent electromagnetic field
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 1635-1644
%V 56
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_9_a9/
%G ru
%F ZVMMF_2016_56_9_a9
S. L. Ginzburg; V. F. Dyachenko; Yu. N. Orlov; N. N. Fimin; V. M. Chechetkin. Simulation of collisionless ultrarelativistic electron-proton plasma dynamics in a self-consistent electromagnetic field. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 9, pp. 1635-1644. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_9_a9/

[1] Peterson B. M., An introduction to active galactic nuclei, Cambridge Univesity Press, Cambridge, 1997

[2] Krolik J., Active galactic nuclei: from the central black hole to the galactic environment, Princeton University Press, Princeton, 1999

[3] Popov M. V., Filina A. A., Baranov A. A., Chardonnet P., Chechetkin V. M., Astroph. J., 783:1 (2014), 1–8 | DOI

[4] Baranov A. A., Chardonnet P., Chechetkin V. M., Filina A. A., Popov M. V., “Multidimensional simulations of pair-instability supernovae”, Astron. Astroph., 558:A10 (2013), 1–5

[5] Chardonnet P., Chechetkin V. M., Titarchuk L., “On the pair-instability supernovae and gamma-ray burst phenomenon”, Astroph. Space Sci., 325:2 (2010), 153–161 | DOI

[6] Meszaros P., Rees M. J., “GeV emission from collisional magnetized gamma-ray bursts”, Astroph. Journ. Lett., 733 (2011), L40–L44 | DOI

[7] Briggs M. S., Tajima H., Dermer C. D., “Fermi observations of high-energy gamma-ray emission from GRM 080916C”, Science, 323:5922 (2009), 1688–1693 | DOI

[8] Morozov A. I., Introduction to plasma dynamics, CRC Press, London, 2012

[9] Stefan V. (ed.), Nonlinear and relativistic effects in plasmas, Reasearch trends in physics, AIP, N.Y., 1991

[10] Jaroschek C. H., Lesch H., Treumann R. A., “Ultra-relativistic plasma shell collisions in gamma-ray burst sources: dimensional effects on the final steady-state magnetic field”, Astroph. Journ., 618:2 (2005), 822–831 | DOI

[11] Komissarov S. S., Vlahakis N., Konigl A., Barkov M. V., “Magnetic acceleration of ultra-relativistic jets in gammaray burst sources”, Mon. Not. Roy. Soc., 394:3 (2009), 1182–1212 | DOI

[12] Sironi L., Spitkovsky A., “Particle acceleration in relativistic magnetized collisionless pair shocks: dependence of shock acceleration on magnetic obliquity”, Astroph. Journ., 698 (2009), 1523–1549 | DOI

[13] Barkov M. V., Komissarov S. S., “Magnetic acceleration of ultrarelativistic GRB and AGN jets”, Int. J. Mod. Phys. D, 17 (2008), 1669–1675 | DOI

[14] Martins S. F., Fonseca R. A., Silva L. O., Mori W. B., “Ion dynamics and acceleration shocks”, Astroph. Journ., 695 (2009), L189–L193 | DOI

[15] Vieira J., Amorim L. D., Mori W. B., Muggli P., Silva L. O., “Self-modulation instability of ultrarelativistic particle bunches with finite rise times”, Plasma Phys. Control. Fusion, 56:8 (2014), 084014–084015 | DOI

[16] De Groot S. R., van Leeuwen W. A., van Weert Ch. G., Relativistic kinetic theory: principles and applications, Elsevier North-Holland, Amsterdam–New York, 1980 | MR

[17] Imshennik V. S., Morozov Yu. I., Radiatsionnaya relyativistskaya gazodinamika vysokotemperaturnykh yavlenii, Atomizdat, M., 1981

[18] Gaida R. P., Tretyak V. I., “Single-time form of the Fokker-type relativistic dynamics”, Acta Phys. Polon. Ser. B, 11:7 (1980), 509–522

[19] Dyachenko V. F., “O raschetakh zadach besstolknovitelnoi plazmy”, Zh. vychisl. matem. i matem. fiz., 25:4 (1985), 611–627

[20] Dyachenko V. F., Desyat lektsii po fizicheskoi matematike, Faktorial, M., 1997

[21] Kirillov D. S., Korob O. V., Mitin N. A., Orlov Yu. N., Pleshakov R. V., Raspredeleniya pokazatelya Khersta nestatsionarnogo markirovonnogo vremennogo ryada, Preprint No 3, IPM RAN, M., 2013, 16 pp.

[22] Hurst H., Black R., Simaika Y., Long-term storage. An experimental study, Constable, London, 1965

[23] Smereka P., “A Vlasov description of the Euler equation”, Nonlinearity, 9 (1996), 1361–1386 | DOI | MR | Zbl