@article{ZVMMF_2016_56_9_a8,
author = {E. G. Ekomasov and R. K. Salimov},
title = {Pseudo-spectral {Fourier} method as applied to finding localized spherical soliton solutions of $(3 + 1)$-dimensional {Klein{\textendash}Gordon} equations},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1628--1634},
year = {2016},
volume = {56},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_9_a8/}
}
TY - JOUR AU - E. G. Ekomasov AU - R. K. Salimov TI - Pseudo-spectral Fourier method as applied to finding localized spherical soliton solutions of $(3 + 1)$-dimensional Klein–Gordon equations JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2016 SP - 1628 EP - 1634 VL - 56 IS - 9 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_9_a8/ LA - ru ID - ZVMMF_2016_56_9_a8 ER -
%0 Journal Article %A E. G. Ekomasov %A R. K. Salimov %T Pseudo-spectral Fourier method as applied to finding localized spherical soliton solutions of $(3 + 1)$-dimensional Klein–Gordon equations %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2016 %P 1628-1634 %V 56 %N 9 %U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_9_a8/ %G ru %F ZVMMF_2016_56_9_a8
E. G. Ekomasov; R. K. Salimov. Pseudo-spectral Fourier method as applied to finding localized spherical soliton solutions of $(3 + 1)$-dimensional Klein–Gordon equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 9, pp. 1628-1634. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_9_a8/
[1] Scott A. (ed.), Encyclopedia of nonlinear science, Routledge, New York, 2004 | MR
[2] Braun O. M., Kivshar Yu. S., Model Frenkelya–Kontorovoi: kontseptsii, metody, prilozheniya, Fizmatlit, M., 2008
[3] Dauxois T., Peyrard M., Physics of solitons, Cambridge University Press, New York, 2010 | Zbl
[4] Knight C. J. K., Derks G., Doelman A., Susanto H., “Stability of stationary fronts in a non-linear wave equation with spatial inhomogeneity”, J. Different. Equations, 254:2 (2013), 408–468 | DOI | MR | Zbl
[5] Saadatmand D., Javidan K., “Collective-coordinate analysis of inhomogeneous nonlinear Klein–Gordon field theory”, Brazilian J. Phys., 43:1–2 (2013), 48–56 | DOI
[6] Gonzalez J. A., Bellorin A., Guerrero L. E., “Kink-soliton explosions in generalized. Klein–Gordon equations Chaos”, Solitons Fractals, 33:1(143) (2007), 1553 | MR
[7] Konopelchenko B. G., Solitons in multidimensions: inverse spectral transform method, World Scientific, Singapore, 1993 | MR | Zbl
[8] Johnson S., Suarez P., Biswas A., “New exact solutions for the Sine-Gordon equation in 2 + 1 dimensions”, Computat. Math. and Math. Phys., 52:1 (2012), 98–104 | DOI | MR | Zbl
[9] Malomed B. A., “Discrete solitons and vortices on two-dimensional lattices of PT-symmetric couplers”, J. Opt. Soc. Am. B, 31:10 (2014), 2060 | DOI
[10] Efremidis N. K., Hizanidis K., Malomed B. A., Trapani P. Di., “Three-dimensional vortex solitons in self-defocusing media”, Phys. Rev. Lett., 98 (2007), 113901 | DOI
[11] Alfimov G. L., Evans W. A. B., Vazquez L., “On radial sine-Gordon breathers”, Nonlinearity, 13 (2000), 1657–1680 | DOI | MR | Zbl
[12] Fodor G., Forgacs P., Grandclement P., Racz I., “Oscillons and quasi-breathers in the $\varphi^4$ Klein–Gordon model”, Phys. Rev. D, 74 (2006), 124 | DOI
[13] Richard S., Tasgal Y. B., Malomed B. A., “Creating very slow optical gap solitons with inter-fiber coupling”, Phys. Rev. Lett., 98 (2007), 243902 | DOI
[14] Makhankov V. G., “Solitony i chislennyi eksperiment”, Fizika elementarnykh chastits i atomnogo yadra, 14:1 (1983), 123–180 | MR
[15] Ekomasov E. G., Salimov R. K., “O lokalizovannykh dolgozhivuschikh trekhmernykh resheniyakh nelineinogo uravneniya Kleina–Gordona s potentsialom drobnoi stepeni”, Pisma v ZhETF, 100:7 (2014), 538–540
[16] Koutvitsky V., Maslov E., “Instability of coherent states of a real scalar field”, J. Math. Phys., 47 (2006), 022302 | DOI | MR | Zbl
[17] Dehghan M., Fakhar-Izadi F., “The spectral collocation method with three different bases for solving a nonlinear partial differential equation arising in modeling of nonlinear waves”, Math. and Comput. Modelling, 53:9–10 (2011), 1865–1877 | DOI | MR | Zbl
[18] Popov S. P., “Vozmuschennye solitonnye resheniya uravneniya sin-Gordona”, Zh. vychisl. matem. i matem. fiz., 49:12 (2009), 2182–2188 | MR
[19] Dodd R., Eilbek Dzh., Gibbon Dzh., Solitony i nelineinye volnovye uravneniya, Mir, M., 1988
[20] Barbashov B. M., Chernikov N. A., “Reshenie i kvantovanie nelineinoi modeli tipa polya Borna–Infelda”, Zh. eksperim. i teoret. fiz., 50:3 (1966), 1296–1308
[21] Couder Y., Fort E., Gautier C. H., Boudaoud A., “From bouncing to floating: Noncoalescence of drops on a fluid bath”, Phys. Rev. Lett., 94 (2005), 177801 | DOI