Pseudo-spectral Fourier method as applied to finding localized spherical soliton solutions of $(3 + 1)$-dimensional Klein–Gordon equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 9, pp. 1628-1634 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Nonlinear Klein–Gordon equations with fractional power and logarithmic potentials and with a variation in the $\varphi^4$ potential are found for which the existence of long-lived stable spherically symmetric solutions in the form of pulsons is numerically established. Their mean oscillation amplitude and the frequency of the fast oscillation mode do not vary in the course of the numerical simulation. It is shown that the stability of these pulsons is explained by the presence of a potential well.
@article{ZVMMF_2016_56_9_a8,
     author = {E. G. Ekomasov and R. K. Salimov},
     title = {Pseudo-spectral {Fourier} method as applied to finding localized spherical soliton solutions of $(3 + 1)$-dimensional {Klein{\textendash}Gordon} equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1628--1634},
     year = {2016},
     volume = {56},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_9_a8/}
}
TY  - JOUR
AU  - E. G. Ekomasov
AU  - R. K. Salimov
TI  - Pseudo-spectral Fourier method as applied to finding localized spherical soliton solutions of $(3 + 1)$-dimensional Klein–Gordon equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 1628
EP  - 1634
VL  - 56
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_9_a8/
LA  - ru
ID  - ZVMMF_2016_56_9_a8
ER  - 
%0 Journal Article
%A E. G. Ekomasov
%A R. K. Salimov
%T Pseudo-spectral Fourier method as applied to finding localized spherical soliton solutions of $(3 + 1)$-dimensional Klein–Gordon equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 1628-1634
%V 56
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_9_a8/
%G ru
%F ZVMMF_2016_56_9_a8
E. G. Ekomasov; R. K. Salimov. Pseudo-spectral Fourier method as applied to finding localized spherical soliton solutions of $(3 + 1)$-dimensional Klein–Gordon equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 9, pp. 1628-1634. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_9_a8/

[1] Scott A. (ed.), Encyclopedia of nonlinear science, Routledge, New York, 2004 | MR

[2] Braun O. M., Kivshar Yu. S., Model Frenkelya–Kontorovoi: kontseptsii, metody, prilozheniya, Fizmatlit, M., 2008

[3] Dauxois T., Peyrard M., Physics of solitons, Cambridge University Press, New York, 2010 | Zbl

[4] Knight C. J. K., Derks G., Doelman A., Susanto H., “Stability of stationary fronts in a non-linear wave equation with spatial inhomogeneity”, J. Different. Equations, 254:2 (2013), 408–468 | DOI | MR | Zbl

[5] Saadatmand D., Javidan K., “Collective-coordinate analysis of inhomogeneous nonlinear Klein–Gordon field theory”, Brazilian J. Phys., 43:1–2 (2013), 48–56 | DOI

[6] Gonzalez J. A., Bellorin A., Guerrero L. E., “Kink-soliton explosions in generalized. Klein–Gordon equations Chaos”, Solitons Fractals, 33:1(143) (2007), 1553 | MR

[7] Konopelchenko B. G., Solitons in multidimensions: inverse spectral transform method, World Scientific, Singapore, 1993 | MR | Zbl

[8] Johnson S., Suarez P., Biswas A., “New exact solutions for the Sine-Gordon equation in 2 + 1 dimensions”, Computat. Math. and Math. Phys., 52:1 (2012), 98–104 | DOI | MR | Zbl

[9] Malomed B. A., “Discrete solitons and vortices on two-dimensional lattices of PT-symmetric couplers”, J. Opt. Soc. Am. B, 31:10 (2014), 2060 | DOI

[10] Efremidis N. K., Hizanidis K., Malomed B. A., Trapani P. Di., “Three-dimensional vortex solitons in self-defocusing media”, Phys. Rev. Lett., 98 (2007), 113901 | DOI

[11] Alfimov G. L., Evans W. A. B., Vazquez L., “On radial sine-Gordon breathers”, Nonlinearity, 13 (2000), 1657–1680 | DOI | MR | Zbl

[12] Fodor G., Forgacs P., Grandclement P., Racz I., “Oscillons and quasi-breathers in the $\varphi^4$ Klein–Gordon model”, Phys. Rev. D, 74 (2006), 124 | DOI

[13] Richard S., Tasgal Y. B., Malomed B. A., “Creating very slow optical gap solitons with inter-fiber coupling”, Phys. Rev. Lett., 98 (2007), 243902 | DOI

[14] Makhankov V. G., “Solitony i chislennyi eksperiment”, Fizika elementarnykh chastits i atomnogo yadra, 14:1 (1983), 123–180 | MR

[15] Ekomasov E. G., Salimov R. K., “O lokalizovannykh dolgozhivuschikh trekhmernykh resheniyakh nelineinogo uravneniya Kleina–Gordona s potentsialom drobnoi stepeni”, Pisma v ZhETF, 100:7 (2014), 538–540

[16] Koutvitsky V., Maslov E., “Instability of coherent states of a real scalar field”, J. Math. Phys., 47 (2006), 022302 | DOI | MR | Zbl

[17] Dehghan M., Fakhar-Izadi F., “The spectral collocation method with three different bases for solving a nonlinear partial differential equation arising in modeling of nonlinear waves”, Math. and Comput. Modelling, 53:9–10 (2011), 1865–1877 | DOI | MR | Zbl

[18] Popov S. P., “Vozmuschennye solitonnye resheniya uravneniya sin-Gordona”, Zh. vychisl. matem. i matem. fiz., 49:12 (2009), 2182–2188 | MR

[19] Dodd R., Eilbek Dzh., Gibbon Dzh., Solitony i nelineinye volnovye uravneniya, Mir, M., 1988

[20] Barbashov B. M., Chernikov N. A., “Reshenie i kvantovanie nelineinoi modeli tipa polya Borna–Infelda”, Zh. eksperim. i teoret. fiz., 50:3 (1966), 1296–1308

[21] Couder Y., Fort E., Gautier C. H., Boudaoud A., “From bouncing to floating: Noncoalescence of drops on a fluid bath”, Phys. Rev. Lett., 94 (2005), 177801 | DOI