@article{ZVMMF_2016_56_9_a6,
author = {V. P. Il'ev and S. D. Il'eva and A. A. Navrotskaya},
title = {Approximate solution of the $p$-median minimization problem},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1614--1621},
year = {2016},
volume = {56},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_9_a6/}
}
TY - JOUR AU - V. P. Il'ev AU - S. D. Il'eva AU - A. A. Navrotskaya TI - Approximate solution of the $p$-median minimization problem JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2016 SP - 1614 EP - 1621 VL - 56 IS - 9 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_9_a6/ LA - ru ID - ZVMMF_2016_56_9_a6 ER -
%0 Journal Article %A V. P. Il'ev %A S. D. Il'eva %A A. A. Navrotskaya %T Approximate solution of the $p$-median minimization problem %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2016 %P 1614-1621 %V 56 %N 9 %U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_9_a6/ %G ru %F ZVMMF_2016_56_9_a6
V. P. Il'ev; S. D. Il'eva; A. A. Navrotskaya. Approximate solution of the $p$-median minimization problem. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 9, pp. 1614-1621. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_9_a6/
[1] Kariv O., Hakimi S. L., “An algorithmic approach to network location problems. II. The $p$-medians”, SIAM J. Appl. Math., 37:3 (1979), 539–560 | DOI | MR | Zbl
[2] Geri M., Dzhonson D., Vychislitelnye mashiny i trudnoreshaemye zadachi, Mir, M., 1982
[3] Kochetov Yu. A., “Vychislitelnye vozmozhnosti lokalnogo poiska v kombinatornoi optimizatsii”, Zh. vychisl. matem. i matem. fiz., 48:5 (2008), 788–807 | MR | Zbl
[4] Kochetov Yu. A., Paschenko M. G., Plyasunov A. V., “O slozhnosti lokalnogo poiska v zadache o $p$-mediane”, Diskret. analiz i issled. operatsii. Ser. 2, 12:2 (2005), 44–71 | MR | Zbl
[5] Arya V., Garg N., Khandekar R., Meyerson A., Munagala K., Pandit V., “Local search heuristics for $k$-median and facility location problems”, Proc. 33rd Annual ACM Symp. Theory of Comput. (2001), 21–29 | MR
[6] Charikar M., Guha S., Tardos E., Shmoys D. B., “A constant-factor approximation algorithm for the $k$-median problem”, Proc. 31st Annual ACM Symp. Theory of Comput. (1999), 1–10 | MR
[7] Charikar M., Guha S., “Improved combinatorial algorithms for the facility location and $k$-median problems”, Proc. 40th Annual IEEE Symp. Foundations of Computer Sci. (1999), 378–388 | MR
[8] Jain K., Vazirani V. V., “Primal-dual approximation algorithms for metric facility location and $k$-median problems”, Proc. 40th Annual IEEE Symp. Foundations of Computer Sci. (1999), 2–13 | MR
[9] Nemhauser G. L., Wolsey L. A., Integer and combinatorial optimization, John Wiley Sons Inc., New York, 1988 | MR
[10] Conforti M., Cornuejols G., “Submodular set functions, matroids and the greedy algorithm: tight worst-case bounds and some generalizations of the Rado–Edmonds theorem”, Discrete Appl. Math., 7:3 (1984), 251–274 | DOI | MR | Zbl
[11] Ilev V. P., “Otsenka tochnosti algoritma zhadnogo spuska dlya zadachi minimizatsii supermodulyarnoi funktsii”, Diskret. analiz i issled. operatsii. Ser. 1, 5:4 (1998), 45–60 | MR | Zbl
[12] Il'ev V. P., “An approximation guarantee of the greedy descent algorithm for minimizing a supermodular set function”, Discrete Appl. Math., 114 (2001), 131–146 | DOI | MR | Zbl
[13] Il'ev V., Linker N., “Performance guarantees of a greedy algorithm for minimizing a supermodular set function on comatroid”, European J. Operat. Res., 171 (2006), 648–660 | DOI | MR | Zbl
[14] Ilev V. P., Linker N. V., “K zadache minimizatsii supermodulyarnoi funktsii na komatroide”, Vestnik Omskogo un-ta, 2002, no. 1, 16–18