Multiobjective optimization in a pseudometric objective space as applied to a general model of business activities
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 9, pp. 1602-1613 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that finding the equivalence set for solving multiobjective discrete optimization problems is advantageous over finding the set of Pareto optimal decisions. An example of a set of key parameters characterizing the economic efficiency of a commercial firm is proposed, and a mathematical model of its activities is constructed. In contrast to the classical problem of finding the maximum profit for any business, this study deals with a multiobjective optimization problem. A method for solving inverse multiobjective problems in a multidimensional pseudometric space is proposed for finding the best project of firm's activities. The solution of a particular problem of this type is presented.
@article{ZVMMF_2016_56_9_a5,
     author = {R. V. Khachaturov},
     title = {Multiobjective optimization in a pseudometric objective space as applied to a general model of business activities},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1602--1613},
     year = {2016},
     volume = {56},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_9_a5/}
}
TY  - JOUR
AU  - R. V. Khachaturov
TI  - Multiobjective optimization in a pseudometric objective space as applied to a general model of business activities
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 1602
EP  - 1613
VL  - 56
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_9_a5/
LA  - ru
ID  - ZVMMF_2016_56_9_a5
ER  - 
%0 Journal Article
%A R. V. Khachaturov
%T Multiobjective optimization in a pseudometric objective space as applied to a general model of business activities
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 1602-1613
%V 56
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_9_a5/
%G ru
%F ZVMMF_2016_56_9_a5
R. V. Khachaturov. Multiobjective optimization in a pseudometric objective space as applied to a general model of business activities. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 9, pp. 1602-1613. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_9_a5/

[1] Nogin V. D., Prinyatie reshenii v mnogokriterialnoi srede: kolichestvennyi podkhod, Fizmatlit, M., 2002

[2] Podinovskii V. V., Nogin V. D., Pareto-optimalnye resheniya mnogokriterialnykh zadach, Nauka, M., 1982

[3] Gubko M. V., Novikov D. A., Teoriya igr v upravlenii organizatsionnymi sistemami, Sinteg, M., 2002

[4] Mulen E., Kooperativnoe prinyatie reshenii: aksiomy i modeli, Mir, M., 1991

[5] Mas-Collel A., Whinston M. D., Green J. R., Microeconomic theory, Oxford Univ. Press, N.Y., 1995

[6] Khachaturov V. R., “Approksimatsionno-kombinatornyi metod dekompozitsii i kompozitsii sistem i konechnye topologicheskie prostranstva, reshetki, optimizatsiya”, Zh. vychisl. matem. i matem. fiz., 25:12 (1985), 1777–1794 | MR | Zbl

[7] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1979

[8] Khachaturov V. R., Veselovskii V. E., Zlotov A. V. i dr., Kombinatornye metody i algoritmy resheniya zadach diskretnoi optimizatsii bolshoi razmernosti, Nauka, M., 2000

[9] Khachaturov R. V., “Pryamaya i obratnaya zadachi opredeleniya parametrov mnogosloinykh nanostruktur po uglovomu spektru intensivnosti otrazhennogo rentgenovskogo izlucheniya”, Zh. vychisl. matem. i matem. fiz., 49:10 (2009), 1860–1867 | MR | Zbl

[10] Khachaturov R. V., “Direct and Inverse Problems of Studying the Properties of Multilayer Nanostructures Based on a Two-Dimensional Model of X-Ray Reflection and Scattering”, Comput. Math. Math. Phys., 54:6 (2014), 984–993 | DOI | MR | Zbl

[11] Chetyrkin E. M., Finansovaya matematika, Izd-vo “Delo” ANKh, M., 2010