Numerical continuation of solution at a singular point of high codimension for systems of nonlinear algebraic or transcendental equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 9, pp. 1571-1585 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Numerical continuation of solution through certain singular points of the curve of the set of solutions to a system of nonlinear algebraic or transcendental equations with a parameter is considered. Bifurcation points of codimension two and three are investigated. Algorithms and computer programs are developed that implement the procedure of discrete parametric continuation of the solution and find all branches at simple bifurcation points of codimension two and three. Corresponding theorems are proved, and each algorithm is rigorously justified. A novel algorithm for the estimation of errors of tangential vectors at simple bifurcation points of a finite codimension $m$ is proposed. The operation of the computer programs is demonstrated by test examples, which allows one to estimate their efficiency and confirm the theoretical results.
@article{ZVMMF_2016_56_9_a3,
     author = {S. D. Krasnikov and E. B. Kuznetsov},
     title = {Numerical continuation of solution at a singular point of high codimension for systems of nonlinear algebraic or transcendental equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1571--1585},
     year = {2016},
     volume = {56},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_9_a3/}
}
TY  - JOUR
AU  - S. D. Krasnikov
AU  - E. B. Kuznetsov
TI  - Numerical continuation of solution at a singular point of high codimension for systems of nonlinear algebraic or transcendental equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 1571
EP  - 1585
VL  - 56
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_9_a3/
LA  - ru
ID  - ZVMMF_2016_56_9_a3
ER  - 
%0 Journal Article
%A S. D. Krasnikov
%A E. B. Kuznetsov
%T Numerical continuation of solution at a singular point of high codimension for systems of nonlinear algebraic or transcendental equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 1571-1585
%V 56
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_9_a3/
%G ru
%F ZVMMF_2016_56_9_a3
S. D. Krasnikov; E. B. Kuznetsov. Numerical continuation of solution at a singular point of high codimension for systems of nonlinear algebraic or transcendental equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 9, pp. 1571-1585. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_9_a3/

[1] Keller I. V., Lectures on numerical methods in bifurcation problems, Springer, Berlin, 1987 | MR

[2] Grigolyuk E. I., Shalashilin V. I., Problemy nelineinogo deformirovaniya, Nauka, M., 1988

[3] Allgower E. L., Georg K., Numerical continuation methods: an introduction, Series in Computational Mathematics, 13, Springer Verlag, Berlin–Heidelberg–New York, 1990 | DOI | MR | Zbl

[4] Crawford J. D., “Introduction to bifurcation theory”, Reviews of Modern Physics, 63:4 (1991), 991–1037 | DOI | MR

[5] Kuznetsov E. B., “Kriterialnyi podkhod pri issledovanii dinamicheskogo proschelkivanniya paneli”, Izv. RAN. Mekhanika tverd. tela, 1996, no. 1, 150–160

[6] Shalashilin V. I., Kuznetsov E. B., Metod prodolzheniya resheniya po parametru i nailuchshaya parametrizatsiya v prikladnoi matematike i mekhanike, Editorial URSS, M., 1999

[7] Grigolyuk E. I., Lopanitsyn E. A., Konechnye progiby, ustoichivost i zakriticheskoe povedenie tonkikh pologikh obolochek, Izd-vo MAMI, M., 2004

[8] Krasnikov S. D., Kuznetsov E. B., “Chislennoe prodolzhenie resheniya v tochkakh bifurkatsii matematicheskikh modelei”, Matem. modelirovanie, 21:12 (2009), 47–58 | Zbl

[9] Krasnikov S. D., Kuznetsov E. B., “Parametrizatsiya resheniya v tochkakh bifurkatsii”, Differents. ur-niya, 45:8 (2009), 1194–1198 | MR | Zbl

[10] Karpov V. V., Prochnost i ustoichivost podkreplennykh obolochek vrascheniya, v. 1, Fizmatlit, M., 2010; т. 2, Физматлит, М., 2011

[11] Gavryushin S. S., Baryshnikova O. O., Boriskin O. F., Chislennyi analiz elementov konstruktsii mashin i priborov, Izd-vo MGTU im. N. E. Baumana, M., 2014

[12] Davidenko D. F., “O priblizhennom reshenii sistem nelineinykh uravnenii”, Ukr. matem. zh., 5:2 (1953), 196–206 | MR | Zbl

[13] Shalashilin V. I., Kuznetsov E. V., “Nailuchshii parametr prodolzheniya resheniya”, Dokl. AN, 334:5 (1994), 566–568 | Zbl

[14] Krasnikov S. D., Kuznetsov E. V., “Chislennoe prodolzhenie resheniya v osobykh tochkakh korazmernosti edinitsa”, Zh. vychisl. matem. i matem. fiz., 55:11 (2015), 1835–1856 | DOI | Zbl

[15] Trenogin V. A., Funktsionalnyi analiz, Nauka, M., 2002

[16] Lyapunov A. M., Obschaya zadacha ob ustoichivosti dvizheniya, Kharkov, 1892

[17] Schmidt E., “Zur Theorie linearen und nichtlinearen Integralgleichungen. Teil 3. Über die Auflösungen der nichtlinear Integralgleichungen und die Verveigung ihrer Lösunger”, Math. Ann., 1908, 370–399 | DOI | MR | Zbl

[18] Vainberg M. M., Trenogin V. A., Teoriya vetvleniya reshenii nelineinykh uravnenii, Nauka, M., 1969

[19] Krasnoselskii A. M., Vainikko G. M., Zabreiko P. P. i dr., Priblizhennoe reshenie operatornykh uravnenii, Nauka, M., 1969

[20] Crandall M. G., Rabinowitz P. H., “Bifurcation from simple eigenvalues”, J. Funct. Anal., 8:2 (1971), 321–340 | DOI | MR | Zbl

[21] Kielhofer H., Bifurcation theory: an introduction with applications to PDEs, Appl. Math. Sciences, 156, Springer-Verlag, New York, 2004 | DOI | MR

[22] Kuznetsov E. B., Shalashilin V. I., “Parametricheskoe priblizhenie”, Zh. vychisl. matem. i matem. fiz., 34:12 (1994), 1757–1769 | MR | Zbl

[23] Kuznetsov E. B., Yakimovich A. Yu., “Modelirovanie krivykh parametricheskimi mnogochlenami po metodu naimenshikh kvadratov”, Matem. modelirovanie, 16:6 (2004), 48–51

[24] Kuznetsov E. B., Yakimovich A. Yu., “Nailuchshaya parametrizatsiya v zadachakh priblizheniya krivykh i poverkhnostei”, Zh. vychisl. matem. i matem. fiz., 45:5 (2005), 760–774 | MR | Zbl

[25] Kuznetsov E. B., Yakimovich A. Yu., “The best parametrization for parametric interpolation”, J. Comput. and Appl. Math., 191:2 (2006), 239–245 | DOI | MR | Zbl

[26] Krasnikov S. D., Kuznetsov E. B., “Parametrizatsiya chislennogo resheniya kraevykh zadach dlya nelineinykh differentsialnykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 45:12 (2005), 2148–2158 | MR | Zbl

[27] Krasnikov S. D., Kuznetsov E. B., “Parametrizatsiya chislennogo resheniya nelineinykh kraevykh zadach”, Matem. modelirovanie, 18:9 (2006), 3–16

[28] Krasnikov S. D., Kuznetsov E. B., “K parametrizatsii chislennogo resheniya kraevykh zadach”, Differents. ur-niya, 43:7 (2007), 943–951 | MR | Zbl

[29] Kuznetsov E. B., “Nailuchshaya parametrizatsiya pri postroenii krivykh”, Zh. vychisl. matem. i matem. fiz., 44:9 (2004), 1540–1551 | MR | Zbl

[30] Kuznetsov E. B., “Optimal parametrization in numerical construction of curve”, J. Franklin Institute, 344 (2007), 658–671 | DOI | MR | Zbl

[31] Kuznetsov E. B., “O nailuchshei parametrizatsii”, Zh. vychisl. matem. i matem. fiz., 48:12 (2008), 2129–2140 | MR

[32] Kuznetsov E. B., “Mnogomernaya parametrizatsiya i chislennoe reshenie sistem nelineinykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 50:2 (2010), 255–267 | MR | Zbl

[33] Kuznetsov E. B., “Prodolzhenie resheniya v mnogoparametricheskikh zadachakh priblizheniya krivykh i poverkhnostei”, Zh. vychisl. matem. i matem. fiz., 52:8 (2012), 1457–1471 | MR | Zbl

[34] Levin J., “A parametric algorithm for drawing pictures of solid objects composed of quadric surfaces”, Communications of the ACM, 19:10 (1976), 555–563 | DOI | MR | Zbl

[35] Kakhaner D., Mouler K., Nesh S., Chislennye metody i programmnoe obespechenie, Mir, M., 1998