@article{ZVMMF_2016_56_9_a3,
author = {S. D. Krasnikov and E. B. Kuznetsov},
title = {Numerical continuation of solution at a singular point of high codimension for systems of nonlinear algebraic or transcendental equations},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1571--1585},
year = {2016},
volume = {56},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_9_a3/}
}
TY - JOUR AU - S. D. Krasnikov AU - E. B. Kuznetsov TI - Numerical continuation of solution at a singular point of high codimension for systems of nonlinear algebraic or transcendental equations JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2016 SP - 1571 EP - 1585 VL - 56 IS - 9 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_9_a3/ LA - ru ID - ZVMMF_2016_56_9_a3 ER -
%0 Journal Article %A S. D. Krasnikov %A E. B. Kuznetsov %T Numerical continuation of solution at a singular point of high codimension for systems of nonlinear algebraic or transcendental equations %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2016 %P 1571-1585 %V 56 %N 9 %U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_9_a3/ %G ru %F ZVMMF_2016_56_9_a3
S. D. Krasnikov; E. B. Kuznetsov. Numerical continuation of solution at a singular point of high codimension for systems of nonlinear algebraic or transcendental equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 9, pp. 1571-1585. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_9_a3/
[1] Keller I. V., Lectures on numerical methods in bifurcation problems, Springer, Berlin, 1987 | MR
[2] Grigolyuk E. I., Shalashilin V. I., Problemy nelineinogo deformirovaniya, Nauka, M., 1988
[3] Allgower E. L., Georg K., Numerical continuation methods: an introduction, Series in Computational Mathematics, 13, Springer Verlag, Berlin–Heidelberg–New York, 1990 | DOI | MR | Zbl
[4] Crawford J. D., “Introduction to bifurcation theory”, Reviews of Modern Physics, 63:4 (1991), 991–1037 | DOI | MR
[5] Kuznetsov E. B., “Kriterialnyi podkhod pri issledovanii dinamicheskogo proschelkivanniya paneli”, Izv. RAN. Mekhanika tverd. tela, 1996, no. 1, 150–160
[6] Shalashilin V. I., Kuznetsov E. B., Metod prodolzheniya resheniya po parametru i nailuchshaya parametrizatsiya v prikladnoi matematike i mekhanike, Editorial URSS, M., 1999
[7] Grigolyuk E. I., Lopanitsyn E. A., Konechnye progiby, ustoichivost i zakriticheskoe povedenie tonkikh pologikh obolochek, Izd-vo MAMI, M., 2004
[8] Krasnikov S. D., Kuznetsov E. B., “Chislennoe prodolzhenie resheniya v tochkakh bifurkatsii matematicheskikh modelei”, Matem. modelirovanie, 21:12 (2009), 47–58 | Zbl
[9] Krasnikov S. D., Kuznetsov E. B., “Parametrizatsiya resheniya v tochkakh bifurkatsii”, Differents. ur-niya, 45:8 (2009), 1194–1198 | MR | Zbl
[10] Karpov V. V., Prochnost i ustoichivost podkreplennykh obolochek vrascheniya, v. 1, Fizmatlit, M., 2010; т. 2, Физматлит, М., 2011
[11] Gavryushin S. S., Baryshnikova O. O., Boriskin O. F., Chislennyi analiz elementov konstruktsii mashin i priborov, Izd-vo MGTU im. N. E. Baumana, M., 2014
[12] Davidenko D. F., “O priblizhennom reshenii sistem nelineinykh uravnenii”, Ukr. matem. zh., 5:2 (1953), 196–206 | MR | Zbl
[13] Shalashilin V. I., Kuznetsov E. V., “Nailuchshii parametr prodolzheniya resheniya”, Dokl. AN, 334:5 (1994), 566–568 | Zbl
[14] Krasnikov S. D., Kuznetsov E. V., “Chislennoe prodolzhenie resheniya v osobykh tochkakh korazmernosti edinitsa”, Zh. vychisl. matem. i matem. fiz., 55:11 (2015), 1835–1856 | DOI | Zbl
[15] Trenogin V. A., Funktsionalnyi analiz, Nauka, M., 2002
[16] Lyapunov A. M., Obschaya zadacha ob ustoichivosti dvizheniya, Kharkov, 1892
[17] Schmidt E., “Zur Theorie linearen und nichtlinearen Integralgleichungen. Teil 3. Über die Auflösungen der nichtlinear Integralgleichungen und die Verveigung ihrer Lösunger”, Math. Ann., 1908, 370–399 | DOI | MR | Zbl
[18] Vainberg M. M., Trenogin V. A., Teoriya vetvleniya reshenii nelineinykh uravnenii, Nauka, M., 1969
[19] Krasnoselskii A. M., Vainikko G. M., Zabreiko P. P. i dr., Priblizhennoe reshenie operatornykh uravnenii, Nauka, M., 1969
[20] Crandall M. G., Rabinowitz P. H., “Bifurcation from simple eigenvalues”, J. Funct. Anal., 8:2 (1971), 321–340 | DOI | MR | Zbl
[21] Kielhofer H., Bifurcation theory: an introduction with applications to PDEs, Appl. Math. Sciences, 156, Springer-Verlag, New York, 2004 | DOI | MR
[22] Kuznetsov E. B., Shalashilin V. I., “Parametricheskoe priblizhenie”, Zh. vychisl. matem. i matem. fiz., 34:12 (1994), 1757–1769 | MR | Zbl
[23] Kuznetsov E. B., Yakimovich A. Yu., “Modelirovanie krivykh parametricheskimi mnogochlenami po metodu naimenshikh kvadratov”, Matem. modelirovanie, 16:6 (2004), 48–51
[24] Kuznetsov E. B., Yakimovich A. Yu., “Nailuchshaya parametrizatsiya v zadachakh priblizheniya krivykh i poverkhnostei”, Zh. vychisl. matem. i matem. fiz., 45:5 (2005), 760–774 | MR | Zbl
[25] Kuznetsov E. B., Yakimovich A. Yu., “The best parametrization for parametric interpolation”, J. Comput. and Appl. Math., 191:2 (2006), 239–245 | DOI | MR | Zbl
[26] Krasnikov S. D., Kuznetsov E. B., “Parametrizatsiya chislennogo resheniya kraevykh zadach dlya nelineinykh differentsialnykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 45:12 (2005), 2148–2158 | MR | Zbl
[27] Krasnikov S. D., Kuznetsov E. B., “Parametrizatsiya chislennogo resheniya nelineinykh kraevykh zadach”, Matem. modelirovanie, 18:9 (2006), 3–16
[28] Krasnikov S. D., Kuznetsov E. B., “K parametrizatsii chislennogo resheniya kraevykh zadach”, Differents. ur-niya, 43:7 (2007), 943–951 | MR | Zbl
[29] Kuznetsov E. B., “Nailuchshaya parametrizatsiya pri postroenii krivykh”, Zh. vychisl. matem. i matem. fiz., 44:9 (2004), 1540–1551 | MR | Zbl
[30] Kuznetsov E. B., “Optimal parametrization in numerical construction of curve”, J. Franklin Institute, 344 (2007), 658–671 | DOI | MR | Zbl
[31] Kuznetsov E. B., “O nailuchshei parametrizatsii”, Zh. vychisl. matem. i matem. fiz., 48:12 (2008), 2129–2140 | MR
[32] Kuznetsov E. B., “Mnogomernaya parametrizatsiya i chislennoe reshenie sistem nelineinykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 50:2 (2010), 255–267 | MR | Zbl
[33] Kuznetsov E. B., “Prodolzhenie resheniya v mnogoparametricheskikh zadachakh priblizheniya krivykh i poverkhnostei”, Zh. vychisl. matem. i matem. fiz., 52:8 (2012), 1457–1471 | MR | Zbl
[34] Levin J., “A parametric algorithm for drawing pictures of solid objects composed of quadric surfaces”, Communications of the ACM, 19:10 (1976), 555–563 | DOI | MR | Zbl
[35] Kakhaner D., Mouler K., Nesh S., Chislennye metody i programmnoe obespechenie, Mir, M., 1998