Randomized projection method for estimating angular distributions of polarized radiation based on numerical statistical modeling
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 9, pp. 1560-1570 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

To study the intensity of radiation transmitted through a layer of substance, a Monte Carlo algorithm is developed based on the expansion of the corresponding angular distribution density in terms of orthonormalized polynomials with a “Lambert” weight. The algorithm is optimized so as to simplify the computations as much as possible. Even a small effect of polarization and the deviation of the angular distribution from the Lambert one can be estimated rather accurately by applying the algorithm.
@article{ZVMMF_2016_56_9_a2,
     author = {G. A. Mikhailov and N. V. Tracheva and S. A. Ukhinov},
     title = {Randomized projection method for estimating angular distributions of polarized radiation based on numerical statistical modeling},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1560--1570},
     year = {2016},
     volume = {56},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_9_a2/}
}
TY  - JOUR
AU  - G. A. Mikhailov
AU  - N. V. Tracheva
AU  - S. A. Ukhinov
TI  - Randomized projection method for estimating angular distributions of polarized radiation based on numerical statistical modeling
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 1560
EP  - 1570
VL  - 56
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_9_a2/
LA  - ru
ID  - ZVMMF_2016_56_9_a2
ER  - 
%0 Journal Article
%A G. A. Mikhailov
%A N. V. Tracheva
%A S. A. Ukhinov
%T Randomized projection method for estimating angular distributions of polarized radiation based on numerical statistical modeling
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 1560-1570
%V 56
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_9_a2/
%G ru
%F ZVMMF_2016_56_9_a2
G. A. Mikhailov; N. V. Tracheva; S. A. Ukhinov. Randomized projection method for estimating angular distributions of polarized radiation based on numerical statistical modeling. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 9, pp. 1560-1570. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_9_a2/

[1] Chentsov N. N., Statisticheskie reshayuschie pravila i optimalnye vyvody, Nauka, M., 1972

[2] Sizova A. F., “Otsenka plotnosti delenii v sfericheskom reaktore”, Metod Monte-Karlo v probleme perenosa izluchenii, Atomizdat, M., 1967, 228–232

[3] Mikhailov G. A., Nekotorye voprosy teorii metodov Monte-Karlo, Nauka, Novosibirsk, 1974

[4] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Izd-vo SOAN SSSR, Novosibirsk, 1962

[5] Marchuk G. I., Mikhailov G. A., Nazaraliev M. A. i dr., Metod Monte-Karlo v atmosfernoi optike, Nauka, Novosibirsk, 1976

[6] Devison B., Teoriya perenosa neitronov, Atomizdat, M., 1960

[7] Krylov V. I., Priblizhennoe vychislenie integralov, Nauka, M., 1967

[8] Aleksich G., Problemy skhodimosti ortogonalnykh ryadov, Izd-vo inostr. lit., M., 1963

[9] Mikhailov G. A., Ukhinov S. A., Chimaeva A. S., “Dispersiya standartnoi vektornoi otsenki metoda Monte-Karlo v teorii perenosa polyarizovannogo izlucheniya”, Zh. vychisl. matem. i matem. fiz., 46:11 (2006), 2199–2212