@article{ZVMMF_2016_56_9_a13,
author = {I. S. Menshov and P. V. Pavlukhin},
title = {Efficient parallel shock-capturing method for aerodynamics simulations on body-unfitted {Cartesian} grids},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1677--1691},
year = {2016},
volume = {56},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_9_a13/}
}
TY - JOUR AU - I. S. Menshov AU - P. V. Pavlukhin TI - Efficient parallel shock-capturing method for aerodynamics simulations on body-unfitted Cartesian grids JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2016 SP - 1677 EP - 1691 VL - 56 IS - 9 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_9_a13/ LA - ru ID - ZVMMF_2016_56_9_a13 ER -
%0 Journal Article %A I. S. Menshov %A P. V. Pavlukhin %T Efficient parallel shock-capturing method for aerodynamics simulations on body-unfitted Cartesian grids %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2016 %P 1677-1691 %V 56 %N 9 %U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_9_a13/ %G ru %F ZVMMF_2016_56_9_a13
I. S. Menshov; P. V. Pavlukhin. Efficient parallel shock-capturing method for aerodynamics simulations on body-unfitted Cartesian grids. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 9, pp. 1677-1691. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_9_a13/
[1] Lin Fu, Zhenghong Gao, Kan Xu, Fang Xu, “A multi-block viscous flow solver based on GPU parallel methodology”, Computers and Fluids, 95 (2014), 19–39 | DOI | MR
[2] Jameson A., Turkel E., “Implicit schemes and LU decomposition”, Math. of Comput., 37:156 (1981), 385–397 | MR | Zbl
[3] Kolgan V. P., “Primenenie printsipa minimalnykh znachenii proizvodnoi k postroeniyu konechno-raznostnykh skhem dlya rascheta razryvnykh reshenii gazovoi dinamiki”, Uchenye zap. TsAGI, 3:6 (1972), 68–77
[4] Anderson W. K., Thomas J. L., van Leer B., “Comparison of finite volume flux vector splitting for the Euler equations”, AIAA J., 24:9 (1986), 1453–1460 | DOI
[5] van Leer B., “Towards the ultimate conservative difference scheme V: a second-order sequel to Godunov's method”, J. Comput. Phys., 32 (1979), 101–136 | DOI | MR
[6] Fromm J. E., “A method for reducing dispersion in convective difference schemes”, J. Comput. Phys., 3 (1968), 176–187 | DOI
[7] Godunov S. K., Ryabenkii V. S., Raznostnye skhemy, Nauka, M., 1977
[8] van Albada G. D., van Leer B., Roberts W., “A comparative study of computational methods in cosmic gas dynamics”, Astron. Astrophys., 108 (1982), 76–84 | Zbl
[9] Godunov S. K., “Raznostnyi metod chislennogo rascheta razryvnykh reshenii uravnenii gidrodinamiki”, Matem. sb., 47:3 (1957), 271–306
[10] Godunov S. K., Zabrodin A. V., Ivanov M. Ya., Kraiko A. N., Prokopov G. P., Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976
[11] Toro E., Riemann solvers and numerical methods for fluid dynamics, Springer, 2009, 719 | MR
[12] Rusanov V. V., “Raznostnye skhemy tretego poryadka tochnosti dlya skvoznogo scheta razryvnykh reshenii”, Dokl. AN SSSR, 180:6 (1968), 1303–1305 | MR | Zbl
[13] Menshov I., Nakamura Y., “Hybrid explicit-implicit, unconditionally stable scheme for unsteady compressible flows”, AIAA J., 42:3 (2004), 551–559 | DOI
[14] Menshov I. S., Kornev M. A., “Metod svobodnoi granitsy dlya chislennogo resheniya uravnenii gazovoi dinamiki v oblastyakh s izmenyayuscheisya geometriei”, Matem. modelirovanie, 26:5 (2014), 99–112 | Zbl
[15] Menshov I. S., Pavlukhin P. V., “Chislennoe reshenie zadach gazovoi dinamiki na dekartovykh setkakh s primeneniem gibridnykh vychislitelnykh sistem”, Prepr. IPM im. M. V. Keldysha, 2014, 092
[16] Boiron O., Chiavassa G., Donat R., “A high-resolution penalization method for large Mach number flows in the presence of obstacles”, Computers and Fluids, 38 (2009), 703–714 | DOI | MR | Zbl
[17] Landau L. D., Lifshits E. M., Gidrodinamika, Nauka, M., 1986
[18] Menshov I., Nakamura Y., “An implicit advection upwind splitting scheme for hypersonic air flows in thermochemical nonequilibrium”, Collection of technical papers of 6th Int. Symp. on CFD (Lake Tahoe, Nevada, 1995), 815–821
[19] Pavlukhin P. V., “Realizatsiya parallelnogo metoda LU-SGS dlya zadach gazovoi dinamiki na klasternykh sistemakh s graficheskimi uskoritelyami”, Vestnik NNGU, 2013, no. 1, 213–218
[20] Jameson A., Airfoil admitting non-unique solutions to the Euler equations, AIAA Paper No 91-1625, 1991
[21] Hafez M. M., Guo W. H., “Nonuniqueness of transonic flows”, Acta Mech., 138:3 (1999), 177–184 | DOI | MR | Zbl
[22] Kuzmin A. G., Instability and bifurcation of transonic flow over airfoils, AIAA Paper, 2004
[23] Laflin K. R., Klausmeyer S. M., Zickuhr T. et al., “Data summary from second AIAA computational fluid dynamics drag prediction workshop”, J. Aircraft., 42:5 (2005), 1165–1178 | DOI
[24] Borisov V. E., Davydov A. A., Kudryashov I. Yu., Lutskii A. E., Menshov I. S., “Parallelnaya realizatsiya neyavnoi skhemy na osnove metoda LU-SGS dlya modelirovaniya trekhmernykh turbulentnykh techenii”, Matem. modelirovanie, 26:10 (2014), 64–78 | MR | Zbl
[25] Lutskii A. E., Severin A. V., “Prosteishaya realizatsiya metoda pristenochnykh funktsii”, Prepr. IPM im. M.V. Keldysha, 2013, 038