Efficient parallel shock-capturing method for aerodynamics simulations on body-unfitted Cartesian grids
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 9, pp. 1677-1691 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For problems with complex geometry, a numerical method is proposed for solving the three-dimensional nonstationary Euler equations on Cartesian grids with the use of hybrid computing systems. The baseline numerical scheme, a method for implementing internal boundary conditions on body-unfitted grids, and an iterative matrix-free LU-SGS method for solving the discretized equations are described. An efficient software implementation of the numerical algorithm on a multiprocessor hybrid CPU/GPU computing system is considered. Results of test computations are presented.
@article{ZVMMF_2016_56_9_a13,
     author = {I. S. Menshov and P. V. Pavlukhin},
     title = {Efficient parallel shock-capturing method for aerodynamics simulations on body-unfitted {Cartesian} grids},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1677--1691},
     year = {2016},
     volume = {56},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_9_a13/}
}
TY  - JOUR
AU  - I. S. Menshov
AU  - P. V. Pavlukhin
TI  - Efficient parallel shock-capturing method for aerodynamics simulations on body-unfitted Cartesian grids
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 1677
EP  - 1691
VL  - 56
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_9_a13/
LA  - ru
ID  - ZVMMF_2016_56_9_a13
ER  - 
%0 Journal Article
%A I. S. Menshov
%A P. V. Pavlukhin
%T Efficient parallel shock-capturing method for aerodynamics simulations on body-unfitted Cartesian grids
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 1677-1691
%V 56
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_9_a13/
%G ru
%F ZVMMF_2016_56_9_a13
I. S. Menshov; P. V. Pavlukhin. Efficient parallel shock-capturing method for aerodynamics simulations on body-unfitted Cartesian grids. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 9, pp. 1677-1691. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_9_a13/

[1] Lin Fu, Zhenghong Gao, Kan Xu, Fang Xu, “A multi-block viscous flow solver based on GPU parallel methodology”, Computers and Fluids, 95 (2014), 19–39 | DOI | MR

[2] Jameson A., Turkel E., “Implicit schemes and LU decomposition”, Math. of Comput., 37:156 (1981), 385–397 | MR | Zbl

[3] Kolgan V. P., “Primenenie printsipa minimalnykh znachenii proizvodnoi k postroeniyu konechno-raznostnykh skhem dlya rascheta razryvnykh reshenii gazovoi dinamiki”, Uchenye zap. TsAGI, 3:6 (1972), 68–77

[4] Anderson W. K., Thomas J. L., van Leer B., “Comparison of finite volume flux vector splitting for the Euler equations”, AIAA J., 24:9 (1986), 1453–1460 | DOI

[5] van Leer B., “Towards the ultimate conservative difference scheme V: a second-order sequel to Godunov's method”, J. Comput. Phys., 32 (1979), 101–136 | DOI | MR

[6] Fromm J. E., “A method for reducing dispersion in convective difference schemes”, J. Comput. Phys., 3 (1968), 176–187 | DOI

[7] Godunov S. K., Ryabenkii V. S., Raznostnye skhemy, Nauka, M., 1977

[8] van Albada G. D., van Leer B., Roberts W., “A comparative study of computational methods in cosmic gas dynamics”, Astron. Astrophys., 108 (1982), 76–84 | Zbl

[9] Godunov S. K., “Raznostnyi metod chislennogo rascheta razryvnykh reshenii uravnenii gidrodinamiki”, Matem. sb., 47:3 (1957), 271–306

[10] Godunov S. K., Zabrodin A. V., Ivanov M. Ya., Kraiko A. N., Prokopov G. P., Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976

[11] Toro E., Riemann solvers and numerical methods for fluid dynamics, Springer, 2009, 719 | MR

[12] Rusanov V. V., “Raznostnye skhemy tretego poryadka tochnosti dlya skvoznogo scheta razryvnykh reshenii”, Dokl. AN SSSR, 180:6 (1968), 1303–1305 | MR | Zbl

[13] Menshov I., Nakamura Y., “Hybrid explicit-implicit, unconditionally stable scheme for unsteady compressible flows”, AIAA J., 42:3 (2004), 551–559 | DOI

[14] Menshov I. S., Kornev M. A., “Metod svobodnoi granitsy dlya chislennogo resheniya uravnenii gazovoi dinamiki v oblastyakh s izmenyayuscheisya geometriei”, Matem. modelirovanie, 26:5 (2014), 99–112 | Zbl

[15] Menshov I. S., Pavlukhin P. V., “Chislennoe reshenie zadach gazovoi dinamiki na dekartovykh setkakh s primeneniem gibridnykh vychislitelnykh sistem”, Prepr. IPM im. M. V. Keldysha, 2014, 092

[16] Boiron O., Chiavassa G., Donat R., “A high-resolution penalization method for large Mach number flows in the presence of obstacles”, Computers and Fluids, 38 (2009), 703–714 | DOI | MR | Zbl

[17] Landau L. D., Lifshits E. M., Gidrodinamika, Nauka, M., 1986

[18] Menshov I., Nakamura Y., “An implicit advection upwind splitting scheme for hypersonic air flows in thermochemical nonequilibrium”, Collection of technical papers of 6th Int. Symp. on CFD (Lake Tahoe, Nevada, 1995), 815–821

[19] Pavlukhin P. V., “Realizatsiya parallelnogo metoda LU-SGS dlya zadach gazovoi dinamiki na klasternykh sistemakh s graficheskimi uskoritelyami”, Vestnik NNGU, 2013, no. 1, 213–218

[20] Jameson A., Airfoil admitting non-unique solutions to the Euler equations, AIAA Paper No 91-1625, 1991

[21] Hafez M. M., Guo W. H., “Nonuniqueness of transonic flows”, Acta Mech., 138:3 (1999), 177–184 | DOI | MR | Zbl

[22] Kuzmin A. G., Instability and bifurcation of transonic flow over airfoils, AIAA Paper, 2004

[23] Laflin K. R., Klausmeyer S. M., Zickuhr T. et al., “Data summary from second AIAA computational fluid dynamics drag prediction workshop”, J. Aircraft., 42:5 (2005), 1165–1178 | DOI

[24] Borisov V. E., Davydov A. A., Kudryashov I. Yu., Lutskii A. E., Menshov I. S., “Parallelnaya realizatsiya neyavnoi skhemy na osnove metoda LU-SGS dlya modelirovaniya trekhmernykh turbulentnykh techenii”, Matem. modelirovanie, 26:10 (2014), 64–78 | MR | Zbl

[25] Lutskii A. E., Severin A. V., “Prosteishaya realizatsiya metoda pristenochnykh funktsii”, Prepr. IPM im. M.V. Keldysha, 2013, 038