@article{ZVMMF_2016_56_9_a11,
author = {Yu. G. Smirnov},
title = {On the equivalence of the electromagnetic problem of diffraction by an inhomogeneous bounded dielectric body to a volume singular integro-differential equation},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1657--1666},
year = {2016},
volume = {56},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_9_a11/}
}
TY - JOUR AU - Yu. G. Smirnov TI - On the equivalence of the electromagnetic problem of diffraction by an inhomogeneous bounded dielectric body to a volume singular integro-differential equation JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2016 SP - 1657 EP - 1666 VL - 56 IS - 9 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_9_a11/ LA - ru ID - ZVMMF_2016_56_9_a11 ER -
%0 Journal Article %A Yu. G. Smirnov %T On the equivalence of the electromagnetic problem of diffraction by an inhomogeneous bounded dielectric body to a volume singular integro-differential equation %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2016 %P 1657-1666 %V 56 %N 9 %U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_9_a11/ %G ru %F ZVMMF_2016_56_9_a11
Yu. G. Smirnov. On the equivalence of the electromagnetic problem of diffraction by an inhomogeneous bounded dielectric body to a volume singular integro-differential equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 9, pp. 1657-1666. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_9_a11/
[1] Slavin I. V., Smirnov Yu. G., “Silnaya elliptichnost gibridnoi formulirovki dlya elektromagnitnoi zadachi difraktsii”, Zh. vychisl. matem. i matem. fiz., 40:2 (2000), 286–299 | MR | Zbl
[2] Gokhberg I. Ts., Feldman I. A., Uravneniya v svertkakh i proektsionnye metody ikh resheniya, Nauka, M., 1971
[3] Birman M. Sh., Solomyak M. Z., “$L_2$-teoriya operatora Maksvella v proizvolnykh oblastyakh”, Uspekhi matem. nauk, 42:6 (1987), 61–75 | Zbl
[4] Costabel M., “A Coercive bilinear form for maxwell's equations”, J. Math. Analys. and Applicat., 157:2 (1991), 527–541 | DOI | MR | Zbl
[5] Samokhin A. B., Integralnye uravneniya i iteratsionnye metody v elektromagnitnom rasseyanii, Radio i svyaz, M., 1998
[6] Valovik D. V., Smirnov Yu. G., “Metod psevdodifferentsialnykh operatorov dlya issledovaniya ob'emnogo singulyarnogo integralnogo uravneniya”, Izv. vuzov. Povolzhskii region. Fiz.-matem. nauki, 2009, no. 4, 102–114 | Zbl
[7] Valovik D. V., Smirnov Yu. G., “Metod psevdodifferentsialnykh operatorov v zadache difraktsii elektromagnitnoi volny na dielektricheskom tele”, Differents. ur-niya, 48:4 (2012), 509–515 | Zbl
[8] Samokhin A. B., “Ob'emnye singulyarnye integralnye uravneniya dlya zadach rasseyaniya na trekhmernykh dielektricheskikh strukturakh”, Differents. ur-niya, 50:9 (2014), 215–230
[9] Ilinskii A. S., Kravtsov V. V., Sveshnikov A. G., Matematicheskie modeli elektrodinamiki, Vyssh. shkola, M., 1991
[10] Smirnov Yu. G., Tsupak A. A., “Integro-differential equations of the vector problem of electromagnetic wave diffraction by a system of nonintersecting screens and inhomogeneous bodies”, Advanc. Math. Phys., 2015, 945965, 6 pp. | DOI | MR | Zbl
[11] Vladimirov B. C., Uravneniya matematicheskoi fiziki, Nauka, M., 1981
[12] Mikhlin S. G., Mnogomernye singulyarnye integraly i integralnye uravneniya, Fizmatgiz, M., 1962
[13] Teilor M., Psevdodifferentsialnye operatory, Mir, M., 1985
[14] Bykhovskii E. B., Smirnov N. V., “Ob ortogonalnom razlozhenii prostranstva vektor-funktsii, kvadratichno-summiruemykh po zadannoi oblasti i operatorakh vektornogo analiza”, Tr. MIAN SSSR, 59, 1960, 5–36 | MR | Zbl
[15] Costabel M., “A remark on the regularity of solutions of Maxwell's equations on lipschitz domains”, Math. Meth. Appl. Sci., 12 (1990), 365–368 | DOI | MR | Zbl
[16] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1964
[17] Ilinskii A. S., Smirnov Yu. G., Difraktsiya elektromagnitnykh voln na provodyaschikh tonkikh ekranakh, IPRZhR, M., 1996
[18] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971
[19] Mizokhata S., Teoriya uravnenii s chastnymi proizvodnymi, Mir, M., 1977
[20] Kurant R., Gilbert D., Metody matematicheskoi fiziki, v. 2, Gostekhizdat, M., 1951