On the equivalence of the electromagnetic problem of diffraction by an inhomogeneous bounded dielectric body to a volume singular integro-differential equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 9, pp. 1657-1666 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is concerned with the smoothness of the solutions to the volume singular integrodifferential equations for the electric field to which the problem of electromagnetic-wave diffraction by a local inhomogeneous bounded dielectric body is reduced. The basic tool of the study is the method of pseudo-differential operators in Sobolev spaces. The theory of elliptic boundary problems and field-matching problems is also applied. It is proven that, for smooth data of the problem, the solution from the space of square-summable functions is continuous up to the boundaries and smooth inside and outside of the body. The results on the smoothness of the solutions to the volume singular integro-differential equation for the electric field make it possible to resolve the issues on the equivalence of the boundary value problem and the equation.
@article{ZVMMF_2016_56_9_a11,
     author = {Yu. G. Smirnov},
     title = {On the equivalence of the electromagnetic problem of diffraction by an inhomogeneous bounded dielectric body to a volume singular integro-differential equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1657--1666},
     year = {2016},
     volume = {56},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_9_a11/}
}
TY  - JOUR
AU  - Yu. G. Smirnov
TI  - On the equivalence of the electromagnetic problem of diffraction by an inhomogeneous bounded dielectric body to a volume singular integro-differential equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 1657
EP  - 1666
VL  - 56
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_9_a11/
LA  - ru
ID  - ZVMMF_2016_56_9_a11
ER  - 
%0 Journal Article
%A Yu. G. Smirnov
%T On the equivalence of the electromagnetic problem of diffraction by an inhomogeneous bounded dielectric body to a volume singular integro-differential equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 1657-1666
%V 56
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_9_a11/
%G ru
%F ZVMMF_2016_56_9_a11
Yu. G. Smirnov. On the equivalence of the electromagnetic problem of diffraction by an inhomogeneous bounded dielectric body to a volume singular integro-differential equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 9, pp. 1657-1666. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_9_a11/

[1] Slavin I. V., Smirnov Yu. G., “Silnaya elliptichnost gibridnoi formulirovki dlya elektromagnitnoi zadachi difraktsii”, Zh. vychisl. matem. i matem. fiz., 40:2 (2000), 286–299 | MR | Zbl

[2] Gokhberg I. Ts., Feldman I. A., Uravneniya v svertkakh i proektsionnye metody ikh resheniya, Nauka, M., 1971

[3] Birman M. Sh., Solomyak M. Z., “$L_2$-teoriya operatora Maksvella v proizvolnykh oblastyakh”, Uspekhi matem. nauk, 42:6 (1987), 61–75 | Zbl

[4] Costabel M., “A Coercive bilinear form for maxwell's equations”, J. Math. Analys. and Applicat., 157:2 (1991), 527–541 | DOI | MR | Zbl

[5] Samokhin A. B., Integralnye uravneniya i iteratsionnye metody v elektromagnitnom rasseyanii, Radio i svyaz, M., 1998

[6] Valovik D. V., Smirnov Yu. G., “Metod psevdodifferentsialnykh operatorov dlya issledovaniya ob'emnogo singulyarnogo integralnogo uravneniya”, Izv. vuzov. Povolzhskii region. Fiz.-matem. nauki, 2009, no. 4, 102–114 | Zbl

[7] Valovik D. V., Smirnov Yu. G., “Metod psevdodifferentsialnykh operatorov v zadache difraktsii elektromagnitnoi volny na dielektricheskom tele”, Differents. ur-niya, 48:4 (2012), 509–515 | Zbl

[8] Samokhin A. B., “Ob'emnye singulyarnye integralnye uravneniya dlya zadach rasseyaniya na trekhmernykh dielektricheskikh strukturakh”, Differents. ur-niya, 50:9 (2014), 215–230

[9] Ilinskii A. S., Kravtsov V. V., Sveshnikov A. G., Matematicheskie modeli elektrodinamiki, Vyssh. shkola, M., 1991

[10] Smirnov Yu. G., Tsupak A. A., “Integro-differential equations of the vector problem of electromagnetic wave diffraction by a system of nonintersecting screens and inhomogeneous bodies”, Advanc. Math. Phys., 2015, 945965, 6 pp. | DOI | MR | Zbl

[11] Vladimirov B. C., Uravneniya matematicheskoi fiziki, Nauka, M., 1981

[12] Mikhlin S. G., Mnogomernye singulyarnye integraly i integralnye uravneniya, Fizmatgiz, M., 1962

[13] Teilor M., Psevdodifferentsialnye operatory, Mir, M., 1985

[14] Bykhovskii E. B., Smirnov N. V., “Ob ortogonalnom razlozhenii prostranstva vektor-funktsii, kvadratichno-summiruemykh po zadannoi oblasti i operatorakh vektornogo analiza”, Tr. MIAN SSSR, 59, 1960, 5–36 | MR | Zbl

[15] Costabel M., “A remark on the regularity of solutions of Maxwell's equations on lipschitz domains”, Math. Meth. Appl. Sci., 12 (1990), 365–368 | DOI | MR | Zbl

[16] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1964

[17] Ilinskii A. S., Smirnov Yu. G., Difraktsiya elektromagnitnykh voln na provodyaschikh tonkikh ekranakh, IPRZhR, M., 1996

[18] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971

[19] Mizokhata S., Teoriya uravnenii s chastnymi proizvodnymi, Mir, M., 1977

[20] Kurant R., Gilbert D., Metody matematicheskoi fiziki, v. 2, Gostekhizdat, M., 1951