Numerical study of wave propagation in porous media with the use of the grid-characteristic method
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 9, pp. 1645-1656 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Elastic wave propagation in a porous medium is numerically studied by applying the grid-characteristic method. On the basis of direct measurements of reflected and transmitted wave amplitudes, the reflection and decay coefficients are investigated as depending on the degree of porosity (percentage of the pore volume) and on the type of the filling substance (solid, liquid, or nothing). The reflection and decay coefficients are shown to be closely related to the porosity of the medium, which can be used in geological applications (estimation of porosity) and engineering applications (acoustic response attenuation).
@article{ZVMMF_2016_56_9_a10,
     author = {I. E. Kvasov and V. B. Leviant and I. B. Petrov},
     title = {Numerical study of wave propagation in porous media with the use of the grid-characteristic method},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1645--1656},
     year = {2016},
     volume = {56},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_9_a10/}
}
TY  - JOUR
AU  - I. E. Kvasov
AU  - V. B. Leviant
AU  - I. B. Petrov
TI  - Numerical study of wave propagation in porous media with the use of the grid-characteristic method
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 1645
EP  - 1656
VL  - 56
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_9_a10/
LA  - ru
ID  - ZVMMF_2016_56_9_a10
ER  - 
%0 Journal Article
%A I. E. Kvasov
%A V. B. Leviant
%A I. B. Petrov
%T Numerical study of wave propagation in porous media with the use of the grid-characteristic method
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 1645-1656
%V 56
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_9_a10/
%G ru
%F ZVMMF_2016_56_9_a10
I. E. Kvasov; V. B. Leviant; I. B. Petrov. Numerical study of wave propagation in porous media with the use of the grid-characteristic method. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 9, pp. 1645-1656. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_9_a10/

[1] Gurevich B., “Effect of fluid viscosity on elastic attenuation in porous rocks”, Geophisics, 67, 264–270 | DOI

[2] Magomedov K. M., Kholodov A. S., Setochno-kharakteristicheskie chislennye metody, Nauka, M., 1988

[3] Petrov I. B., Kholodov A. S., “O regulyarizatsii razryvnykh chislennykh reshenii uravnenii giperbolicheskogo tipa”, Zh. vychisl. matem. i matem. fiz., 24:8 (1984), 1172–1188 | MR | Zbl

[4] Petrov I. B., Kholodov A. S., “Chislennoe issledovanie nekotorykh dinamicheskikh zadach mekhaniki deformiruemogo tverdogo tela setochno-kharakteristicheskim metodom”, Zh. vychisl. matem. i matem. fiz., 24:5 (1984), 722–739 | MR | Zbl

[5] Kholodov A. S., Kholodov Ya. A., “O kriteriyakh monotonnosti raznostnykh skhem dlya uravnenii giperbolicheskogo tipa”, Zh. vychisl. matem. i matem. fiz., 46:9 (2006), 1638–1667 | MR

[6] Kvasov I. E., Petrov I. B., Chelnokov F. B., “Raschet volnovykh protsessov v neodnorodnykh prostranstvennykh konstruktsiyakh”, Matem. modelirovanie, 21:5 (2009), 3–9

[7] Kvasov I. E., Pankratov S. A., Petrov I. B., “Chislennoe modelirovanie seismicheskikh otklikov v mnogosloinykh geologicheskikh sredakh setochno-kharakteristicheskim metodom”, Matem. modelirovanie, 22:9 (2010), 13–22

[8] Petrov I. B., Chelnokov F. B., “Chislennoe issledovanie volnovykh protsessov i protsessov razrusheniya v mnogosloinykh pregradakh”, Zh. vychisl. matem. i matem. fiz., 43:10 (2003), 1562–1579 | MR | Zbl

[9] Kvasov I. E., Petrov I. B., “Chislennoe modelirovanie volnovykh protsessov v geologicheskikh sredakh v zadachakh seismorazvedki s pomoschyu vysokoproizvoditelnykh EVM”, Zh. vychisl. matem. i matem. fiz., 52:2 (2012), 330–341 | Zbl

[10] Levyant V. B., Petrov I. B., Chelnokov F. B., “Klasternaya priroda otklika seismicheskoi energii, rasseyannoi ot zony diffuznoi poroznosti i treschinovatosti v massivnykh porodakh”, Geofizika, 2005, no. 6, 5–19 | MR

[11] Levyant V. B., Petrov I. B., Kvasov I. E., “Chislennoe modelirovanie volnovogo otklika ot subvertikalnykh makrotreschin, veroyatnykh flyuidoprovodyaschikh kanalov”, Tekhnologii seismorazvedki, 2011, no. 4, 4–16

[12] Kvasov I. E., Levyant V. B., Petrov I. B., “Chislennoe modelirovanie pryamykh otklikov ot plastovykh zon s subvertikalnymi flyuidonasyschennymi mezotreschinami”, Tekhnologii seismorazvedki, 2013, no. 4, 19–35

[13] Kvasov I. E., Petrov I. B., “Chislennoe issledovanie anizotropii volnovykh otklikov ot treschinovatogo plasta setochno-kharakteristicheskim metodom”, Matem. modelirovanie, 23:10 (2011), 97–106 | MR

[14] Kvasov I. E., Leviant V. B., Petrov I. B., “Numerical modeling of direct responses from productive reservoirs with vertical fluid-saturated meso-fractures”, 76th EAGE Conference and Exhibition 2014 (16–19 June 2014, Amsterdam RAI) | DOI

[15] Leviant V. B., Petrov I. B., Kvasov I. E., Muratov M. V., “Numerical modeling of responses from fluid-filled macrofractures with boundary conditions specified on fracture surfaces”, 76th EAGE Conference and Exhibition 2014 (16–19 June 2014, Amsterdam RAI) | DOI

[16] Kvasov I. E., Petrov I. B., Sannikov A. V., Favorskaya A. V., “Kompyuternoe modelirovanie prostranstvennykh dinamicheskikh protsessov setochno-kharakteristicheskim metodom na nestrukturirovannykh tetraedralnykh setkakh”, Informatsionnye tekhnologii, 2011, no. 9, 28–30