An analysis of the matrix equation $AX+\overline{X}B=C$
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 9, pp. 1556-1559 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The matrix equation $AX+\overline{X}B=C$, where $\overline{X}B$ is obtained by the entry-wise conjugation of $X$, is examined. On the basis of analogy with the Sylvester matrix equation, special cases are distinguished where the former equation corresponds to normal and self-adjoint Sylvester equations. Efficient numerical algorithms are proposed for these special cases.
@article{ZVMMF_2016_56_9_a1,
     author = {Kh. D. Ikramov},
     title = {An analysis of the matrix equation $AX+\overline{X}B=C$},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1556--1559},
     year = {2016},
     volume = {56},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_9_a1/}
}
TY  - JOUR
AU  - Kh. D. Ikramov
TI  - An analysis of the matrix equation $AX+\overline{X}B=C$
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 1556
EP  - 1559
VL  - 56
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_9_a1/
LA  - ru
ID  - ZVMMF_2016_56_9_a1
ER  - 
%0 Journal Article
%A Kh. D. Ikramov
%T An analysis of the matrix equation $AX+\overline{X}B=C$
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 1556-1559
%V 56
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_9_a1/
%G ru
%F ZVMMF_2016_56_9_a1
Kh. D. Ikramov. An analysis of the matrix equation $AX+\overline{X}B=C$. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 9, pp. 1556-1559. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_9_a1/

[1] Fassbender H., Ikramov Kh. D., “Some observations on the Youla form and conjugate-normal matrices”, Linear Algebra Appl., 422 (2007), 29–38 | DOI | MR | Zbl

[2] Bevis J. H., Hall F. J., Hartwig R. H., “Consimilarity and the matrix equation $A\overline{X}-XB=C$”, Proc. Third Auburn Matrix Theory Conference, North-Holland, Amsterdam, 1987, 51–64 | MR

[3] Ikramov Kh. D., “Lineinye matrichnye uravneniya tipa Silvestra v samosopryazhennom sluchae”, Dokl. AN, 450:2 (2013), 147–149 | DOI | Zbl

[4] Ikramov Kh. D., “Usloviya normalnosti lineinykh matrichnykh operatorov tipa Silvestra”, Dokl. AN, 459:4 (2014), 403–405 | DOI | Zbl

[5] Khorn R., Dzhonson Ch., Matrichnyi analiz, Mir, M., 1989

[6] George A., Ikramov Kh. D., Matushkina E. V., Tang W.-P., “On a QR-like algorithm for some structured eigenvalue problems”, SIAM J. Matrix Anal. Appl., 16:4 (1995), 1107–1126 | DOI | MR | Zbl