@article{ZVMMF_2016_56_9_a0,
author = {M. Yu. Kokurin},
title = {Iteratively regularized methods for irregular nonlinear operator equations with a normally solvable derivative at the solution},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1543--1555},
year = {2016},
volume = {56},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_9_a0/}
}
TY - JOUR AU - M. Yu. Kokurin TI - Iteratively regularized methods for irregular nonlinear operator equations with a normally solvable derivative at the solution JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2016 SP - 1543 EP - 1555 VL - 56 IS - 9 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_9_a0/ LA - ru ID - ZVMMF_2016_56_9_a0 ER -
%0 Journal Article %A M. Yu. Kokurin %T Iteratively regularized methods for irregular nonlinear operator equations with a normally solvable derivative at the solution %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2016 %P 1543-1555 %V 56 %N 9 %U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_9_a0/ %G ru %F ZVMMF_2016_56_9_a0
M. Yu. Kokurin. Iteratively regularized methods for irregular nonlinear operator equations with a normally solvable derivative at the solution. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 9, pp. 1543-1555. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_9_a0/
[1] Bakushinskii A. B., Kokurin M. Yu., Iteratsionnye metody resheniya nekorrektnykh operatornykh uravnenii s gladkimi operatorami, Editorial URSS, M., 2002
[2] Izmailov A. F., Tretyakov A. A., 2-regulyarnye resheniya nelineinykh zadach, Fizmatlit, M., 1999
[3] Kabanikhin S. I., Obratnye i nekorrektnye zadachi, Sibirskoe nauchnoe izd-vo, Novosibirsk, 2008
[4] Kokurin M. Yu., “O vypuklosti funktsionala Tikhonova i iterativno regulyarizovannykh metodakh resheniya neregulyarnykh nelineinykh operatornykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 50:4 (2010), 651–664 | MR | Zbl
[5] Kokurin M. Yu., “Ob organizatsii globalnogo poiska pri realizatsii skhemy Tikhonova”, Izv. vyssh. uchebn. zavedenii. Matematika, 2010, no. 12, 20–31
[6] Vainikko G. M., Veretennikov A. Yu., Iteratsionnye protsedury v nekorrektnykh zadachakh, Nauka, M., 1986
[7] Tikhonov A. N., Leonov A. S., Yagola A. G., Nelineinye nekorrektnye zadachi, Fizmatlit, M., 1995
[8] Bakushinsky A., Smirnova A., “On application of generalized discrepancy principle to iterative methods for nonlinear ill-posed problems”, Numer. Funct. Anal. Optim., 26:1 (2005), 35–48 | DOI | MR | Zbl
[9] Morozov V. A., Regulyarnye metody resheniya nekorrektno postavlennykh zadach, Nauka, M., 1987
[10] Alekseev V. M., Tikhomirov V. M., Fomin S. V., Optimalnoe upravlenie, Fizmatlit, M., 2005
[11] Bakushinskii A. B., Kokurin M. Yu., Iteratsionnye metody resheniya neregulyarnykh uravnenii, Lenand, M., 2006
[12] Leonov A. S., Mozhet li apriornaya otsenka tochnosti priblizhennogo resheniya nekorrektnoi zadachi byt sravnimoi s oshibkoi dannykh?, Zh. vychisl. matem. i matem. fiz., 54:4 (2014), 562–568 | DOI | Zbl
[13] Kaltenbacher B., Neubauer A., Scherzer O., Iterative regularization methods for nonlinear ill-posed problems, Walter de Gruyter, Berlin, 2008 | MR