Iteratively regularized methods for irregular nonlinear operator equations with a normally solvable derivative at the solution
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 9, pp. 1543-1555 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A group of iteratively regularized methods of Gauss–Newton type for solving irregular nonlinear equations with smooth operators in a Hilbert space under the condition of normal solvability of the derivative of the operator at the solution is considered. A priori and a posteriori methods for termination of iterations are studied, and estimates of the accuracy of approximations obtained are found. It is shown that, in the case of a priori termination, the accuracy of the approximation is proportional to the error in the input data. Under certain additional conditions, the same estimate is established for a posterior termination from the residual principle. These results generalize known similar estimates for linear equations with a normally solvable operator.
@article{ZVMMF_2016_56_9_a0,
     author = {M. Yu. Kokurin},
     title = {Iteratively regularized methods for irregular nonlinear operator equations with a normally solvable derivative at the solution},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1543--1555},
     year = {2016},
     volume = {56},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_9_a0/}
}
TY  - JOUR
AU  - M. Yu. Kokurin
TI  - Iteratively regularized methods for irregular nonlinear operator equations with a normally solvable derivative at the solution
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 1543
EP  - 1555
VL  - 56
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_9_a0/
LA  - ru
ID  - ZVMMF_2016_56_9_a0
ER  - 
%0 Journal Article
%A M. Yu. Kokurin
%T Iteratively regularized methods for irregular nonlinear operator equations with a normally solvable derivative at the solution
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 1543-1555
%V 56
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_9_a0/
%G ru
%F ZVMMF_2016_56_9_a0
M. Yu. Kokurin. Iteratively regularized methods for irregular nonlinear operator equations with a normally solvable derivative at the solution. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 9, pp. 1543-1555. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_9_a0/

[1] Bakushinskii A. B., Kokurin M. Yu., Iteratsionnye metody resheniya nekorrektnykh operatornykh uravnenii s gladkimi operatorami, Editorial URSS, M., 2002

[2] Izmailov A. F., Tretyakov A. A., 2-regulyarnye resheniya nelineinykh zadach, Fizmatlit, M., 1999

[3] Kabanikhin S. I., Obratnye i nekorrektnye zadachi, Sibirskoe nauchnoe izd-vo, Novosibirsk, 2008

[4] Kokurin M. Yu., “O vypuklosti funktsionala Tikhonova i iterativno regulyarizovannykh metodakh resheniya neregulyarnykh nelineinykh operatornykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 50:4 (2010), 651–664 | MR | Zbl

[5] Kokurin M. Yu., “Ob organizatsii globalnogo poiska pri realizatsii skhemy Tikhonova”, Izv. vyssh. uchebn. zavedenii. Matematika, 2010, no. 12, 20–31

[6] Vainikko G. M., Veretennikov A. Yu., Iteratsionnye protsedury v nekorrektnykh zadachakh, Nauka, M., 1986

[7] Tikhonov A. N., Leonov A. S., Yagola A. G., Nelineinye nekorrektnye zadachi, Fizmatlit, M., 1995

[8] Bakushinsky A., Smirnova A., “On application of generalized discrepancy principle to iterative methods for nonlinear ill-posed problems”, Numer. Funct. Anal. Optim., 26:1 (2005), 35–48 | DOI | MR | Zbl

[9] Morozov V. A., Regulyarnye metody resheniya nekorrektno postavlennykh zadach, Nauka, M., 1987

[10] Alekseev V. M., Tikhomirov V. M., Fomin S. V., Optimalnoe upravlenie, Fizmatlit, M., 2005

[11] Bakushinskii A. B., Kokurin M. Yu., Iteratsionnye metody resheniya neregulyarnykh uravnenii, Lenand, M., 2006

[12] Leonov A. S., Mozhet li apriornaya otsenka tochnosti priblizhennogo resheniya nekorrektnoi zadachi byt sravnimoi s oshibkoi dannykh?, Zh. vychisl. matem. i matem. fiz., 54:4 (2014), 562–568 | DOI | Zbl

[13] Kaltenbacher B., Neubauer A., Scherzer O., Iterative regularization methods for nonlinear ill-posed problems, Walter de Gruyter, Berlin, 2008 | MR