Iteratively regularized methods for irregular nonlinear operator equations with a normally solvable derivative at the solution
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 9, pp. 1543-1555

Voir la notice de l'article provenant de la source Math-Net.Ru

A group of iteratively regularized methods of Gauss–Newton type for solving irregular nonlinear equations with smooth operators in a Hilbert space under the condition of normal solvability of the derivative of the operator at the solution is considered. A priori and a posteriori methods for termination of iterations are studied, and estimates of the accuracy of approximations obtained are found. It is shown that, in the case of a priori termination, the accuracy of the approximation is proportional to the error in the input data. Under certain additional conditions, the same estimate is established for a posterior termination from the residual principle. These results generalize known similar estimates for linear equations with a normally solvable operator.
@article{ZVMMF_2016_56_9_a0,
     author = {M. Yu. Kokurin},
     title = {Iteratively regularized methods for irregular nonlinear operator equations with a normally solvable derivative at the solution},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1543--1555},
     publisher = {mathdoc},
     volume = {56},
     number = {9},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_9_a0/}
}
TY  - JOUR
AU  - M. Yu. Kokurin
TI  - Iteratively regularized methods for irregular nonlinear operator equations with a normally solvable derivative at the solution
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 1543
EP  - 1555
VL  - 56
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_9_a0/
LA  - ru
ID  - ZVMMF_2016_56_9_a0
ER  - 
%0 Journal Article
%A M. Yu. Kokurin
%T Iteratively regularized methods for irregular nonlinear operator equations with a normally solvable derivative at the solution
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 1543-1555
%V 56
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_9_a0/
%G ru
%F ZVMMF_2016_56_9_a0
M. Yu. Kokurin. Iteratively regularized methods for irregular nonlinear operator equations with a normally solvable derivative at the solution. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 9, pp. 1543-1555. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_9_a0/