Modified splitting method for solving the nonstationary kinetic particle transport equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 8, pp. 1480-1490 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A modified splitting method for solving the nonstationary kinetic equation of particle (neutron) transport without iteration with respect to the collision integral is proposed. According to the modification, the solutions of the first-stage integrodifferential equations and the collision integrals are found using analytical rather than finite-difference methods. The solution method is naturally extended to multidimensional problems and is well suited for massive parallelism.
@article{ZVMMF_2016_56_8_a9,
     author = {N. Ya. Moiseev and V. M. Shmakov},
     title = {Modified splitting method for solving the nonstationary kinetic particle transport equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1480--1490},
     year = {2016},
     volume = {56},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_8_a9/}
}
TY  - JOUR
AU  - N. Ya. Moiseev
AU  - V. M. Shmakov
TI  - Modified splitting method for solving the nonstationary kinetic particle transport equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 1480
EP  - 1490
VL  - 56
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_8_a9/
LA  - ru
ID  - ZVMMF_2016_56_8_a9
ER  - 
%0 Journal Article
%A N. Ya. Moiseev
%A V. M. Shmakov
%T Modified splitting method for solving the nonstationary kinetic particle transport equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 1480-1490
%V 56
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_8_a9/
%G ru
%F ZVMMF_2016_56_8_a9
N. Ya. Moiseev; V. M. Shmakov. Modified splitting method for solving the nonstationary kinetic particle transport equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 8, pp. 1480-1490. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_8_a9/

[1] Karlson B., Bell Dzh., “Reshenie transportnogo uravneniya Sn-metodom”, Fizika yadernykh reaktorov, Atomizdat, M., 1959, 408–432

[2] Karlson B., Bell Dzh., “Chislennoe reshenie zadach kineticheskoi teorii neitronov”, Teoriya yadernykh reaktorov, Gosatomizdat, M., 1963, 243–258 | Zbl

[3] Marchuk G. I., Lebedev V. I., Chislennye metody v teorii perenosa neitronov, Atomizdat, M., 1981

[4] Shagaliev R. M., Shumilin V. A., Alekseev A. V. i dr., “Matematicheskie modeli i metodiki resheniya mnogomernykh zadach perenosa chastits i energii, realizovannye v komplekse “SATURN-3””, VANT. Ser. Matematicheskoe modelirovanie fizicheskikh protsessov, 1999, no. 4, 20–26

[5] Gadzhiev F. D., Kondakov I. A., Pisarev V. N., Starodumov O. I., Shestakov A. A., “Metod diskretnykh ordinat s iskusstvennoi dissipatsiei (DDAD-skhema). Dlya chislennogo resheniya uravneniya perenosa neitronov”, VANT. Ser. Matematicheskoe modelirovanie fizicheskikh protsessov, 2003, no. 4, 13–24

[6] Kopp H. J., “Synthetic Method Solution of the Transport Equation”, Nucl. Sci. Engng., 17 (1963), 65 | DOI

[7] Troschiev V. E., “Reshenie kineticheskogo uravneniya i uravneniya kvazidiffuzii po soglasovannym raznostnym skhemam”, Chislennye metody resheniya zadach matematicheskoi fiziki, Nauka, M., 1966, 177–185 | Zbl

[8] Alcouff R. E., “A stable diffusion synthetic acceleration method for neutron transport iterations”, Trans. Am. Nucl. Soc., 23 (1976), 203

[9] Morel J. E., “A synthetic acceleration method for discrete ordinates calculations with highly anisotropic scattering”, Nucl. Sci. Engng., 82 (1982), 34

[10] Larsen E. W., “Unconditionally stable diffusion synthetic acceleration methods for the slab geometry discrete-ordinates equations. Part 1: Theory”, Nucl. Sci. Engng., 82 (1982), 47 | DOI

[11] McCoy D. R., Larsen E. W., “Unconditionally stable diffusion synthetic acceleration methods for the slab geometry discrete-ordinates equations. Part 2: Numerical results”, Nucl. Sci. Engng., 64

[12] Marchuk G. I., Yanenko N. N., “Reshenie mnogomernogo kineticheskogo uravneniya metodom rasschepleniya”, DAN SSSR, 157:6 (1964), 1291–1292 | MR | Zbl

[13] Yanenko N. N., Metod drobnykh shagov resheniya mnogomernykh zadach matematicheskoi fiziki, Nauka, Novosibirsk, 1967

[14] Goldin V. Ya., “Kvazidiffuzionnyi metod resheniya kineticheskogo uravneniya”, Zh. vychisl. matem. i matem. fiz., 4:6 (1964), 1070–1087

[15] Marchuk G. I., Penenko V. V., Sultangazin U. M., “O reshenii kineticheskogo uravneniya metodom rasschepleniya”, Nekotorye voprosy vychislitelnoi i prikladnoi matematiki, Nauka, Novosibirsk, 1966, 152

[16] Moiseev N. Ya., “Yavno-neyavnaya raznostnaya skhema dlya sovmestnogo resheniya uravnenii perenosa teplovogo izlucheniya i energii metodom rasschepleniya”, Zh. vychisl. matem. i matem. fiz., 53:3 (2013), 111–127

[17] Kandiev Ya. Z., Kuropatenko E. S., Lifanova I. V., Orlov A. I., Plokhoi V. V., Shmakov V. M., “Raschet metodom Monte-Karlo vzaimodeistviya chastits s veschestvom po programme “PRIZMA””, Sb. tezisov dokl. III Vsesoyuznoi konferentsii po zaschite ot ioniziruyuschikh izluchenii yaderno-tekhnicheskikh ustanovok (Tbilisi, 1981)

[18] Zatsepin O. V., Kandiev Ya. Z., Kashaeva E. A., Malyshkin G. N., Modestov D. G., “Raschety metodom Monte-Karlo po programme PRIZMA neitronno-fizicheskikh kharakteristik aktivnoi zony VVER-1000”, VANT Ser. Fizika yadernykh reaktorov, 2011, no. 4, 64–73

[19] Marchuk G. I., Metody rasschepleniya, Nauka, M., 1988

[20] Chetverushkin B. N., Matematicheskoe modelirovanie zadach dinamiki izluchayuschego gaza, Nauka, M., 1985

[21] Godunov S. K., Zabrodin A. V., Ivanov M. Ya., Prokopov G. P., Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, ed. S. K. Godunov, Nauka, M., 1976

[22] Bagrinovskii K. A., Godunov S. K., “Raznostnye skhemy dlya mnogomernykh zadach”, Dokl. AN SSSR, 1957, 431–433 | Zbl

[23] Kulikovskii A. G., Pogorelov N. V., Semenov A. Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, Fizmatlit, M., 2001

[24] Moiseev N. Ya., “Neyavnye raznostnye skhemy beguschego scheta povyshennoi tochnosti”, Zh. vychisl. matem. i matem. fiz., 51:5 (2011), 920–935 | MR | Zbl

[25] Moiseev N. Ya., Silanteva I. Yu., “Raznostnye skhemy proizvolnogo poryadka approksimatsii dlya resheniya lineinykh uravnenii perenosa s postoyannymi koeffitsientami metodom Godunova s antidiffuziei”, Zh. vychisl. matem. i matem. fiz., 48:7 (2008), 1282–1293 | MR

[26] Makotra O. A., Moiseev N. Ya., Silanteva I. Yu., Topchii T. V., Frolova N. L., “Simmetrichnye raznostnye skhemy pokomponentnogo rasschepleniya i ekvivalentnye im skhemy prediktor-korrektor dlya resheniya mnogomernykh zadach gazovoi dinamiki metodom Godunova”, Zh. vychisl. matem. i matem. fiz., 49:11 (2009), 1970–1987 | MR | Zbl

[27] Moiseev N. Ya., “Monotonnye raznostnye skhemy povyshennoi tochnosti dlya resheniya zadach gazovoi dinamiki metodom Godunova s antidiffuziei”, Zh. vychisl. matem. i matem. fiz., 51:4 (2011), 723–734 | MR | Zbl

[28] Arsentev A. P., Pisarev V. N., “Osobennosti primeneniya $TVD$-podkhoda k $DS_n$ metodu resheniya trekhmernogo uravneniya perenosa neitronov v krivolineinoi sisteme koordinat”, VANT. Ser. Matem. modelirovanie fiz. protsessov, 2011, no. 1, 13–39

[29] Reed W. H., “New difference schemes for the neutron transport equation”, Nucl. Sci. Engng., 46:2 (1971), 309–314 | DOI