@article{ZVMMF_2016_56_8_a7,
author = {M. S. Elaeva and M. Yu. Zhukov and E. V. Shiryaeva},
title = {Interaction of weak discontinuities and the hodograph method as applied to electric field fractionation of a two-component mixture},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1455--1469},
year = {2016},
volume = {56},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_8_a7/}
}
TY - JOUR AU - M. S. Elaeva AU - M. Yu. Zhukov AU - E. V. Shiryaeva TI - Interaction of weak discontinuities and the hodograph method as applied to electric field fractionation of a two-component mixture JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2016 SP - 1455 EP - 1469 VL - 56 IS - 8 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_8_a7/ LA - ru ID - ZVMMF_2016_56_8_a7 ER -
%0 Journal Article %A M. S. Elaeva %A M. Yu. Zhukov %A E. V. Shiryaeva %T Interaction of weak discontinuities and the hodograph method as applied to electric field fractionation of a two-component mixture %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2016 %P 1455-1469 %V 56 %N 8 %U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_8_a7/ %G ru %F ZVMMF_2016_56_8_a7
M. S. Elaeva; M. Yu. Zhukov; E. V. Shiryaeva. Interaction of weak discontinuities and the hodograph method as applied to electric field fractionation of a two-component mixture. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 8, pp. 1455-1469. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_8_a7/
[1] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii, Nauka, M., 1978
[2] Kurant R., Uravneniya s chastnymi proizvodnymi, Mir, M., 1964
[3] Copson E. T., “On the Riemann–Green function”, Arch. Ration. Mech. Anal., 1 (1958), 324–348 | DOI | MR | Zbl
[4] Ibragimov H. X., “Gruppovoi analiz obyknovennykh differentsialnykh uravnenii i printsip invariantnosti v matematicheskoi fizike”, Uspekhi matem. nauk, 47(286):4 (1992), 83–144 | MR | Zbl
[5] Bitsadze A. V., Nekotorye klassy uravnenii v chastnykh proizvodnykh, Nauka, M., 1981
[6] Kuznetsov N. N., “Nekotorye matematicheskie voprosy khromatografii”, Vychisl. metody i programmirovanie, 1967, no. 6, 242–258
[7] Ferapontov E. V., Tsarev S. P., “Sistemy gidrodinamicheskogo tipa, voznikayuschie v gazovoi khromatografii. Invarianty Rimana i tochnye resheniya”, Matem. modelirovanie, 3:2 (1991), 82–91
[8] Babskii V. G., Zhukov M. Yu., Yudovich V. I., Matematicheskaya teoriya elektroforeza: Primenenie k metodam fraktsionirovaniya biopolimerov, Naukova dumka, Kiev, 1983
[9] Zhukov M. Yu., Massoperenos elektricheskim polem, Izd. Rostovskogo Universiteta, Rostov-na-Donu, 2005
[10] Elaeva M. S., “Vzaimodeistvie silnykh i slabykh razryvov v zadache Rimana dlya giperbolicheskikh uravnenii”, Izv. vyssh. uchebn. zavedenii. Severo-kavkazskii region. Estestvennye nauki, 2010, no. 6, 14–19
[11] Elaeva M. S., “Issledovanie zonalnogo elektroforeza dvukhkomponentnoi smesi veschestv”, Matem. modelirovanie, 22:9 (2010), 146–160 | MR
[12] Elaeva M. S., Matematicheskoe modelirovanie kapillyarnogo zonalnogo elektroforeza, Dis. kand. fiz.-matem. nauk, YuFU, Rostov-na-Donu, 2011
[13] Elaeva M. S., “Razdelenie dvukhkomponentnoi smesi pod deistviem elektricheskogo polya”, Zh. vychisl. matem. i matem. fiz., 52:6 (2012), 1143–1159 | Zbl
[14] Pavlov M. V., Gamiltonov formalizm uravnenii elektroforeza. Integriruemye uravneniya gidrodinamiki, Prepr. im. L. D. Landau, M., 1987 | Zbl
[15] Shiryaeva E. V., Zhukov M. Yu., Hodograph method and numerical integration of two hyperbolic quasilinear equations. Part I. The shallow water equations, 2014, arXiv: 1410.2832
[16] Shiryaeva E. V., Zhukov M. Yu., Hodograph method and numerical solution of the two hyperbolic quasilinear equations system. Part II. Zonal electrophoresis equations, 2014, arXiv: 1503.01762
[17] Senashov S. I., Yakhno A., “Conservation laws, hodograph transformation and boundary value problems of plane plasticity”, SIGMA, 8 (2012), 071 | MR | Zbl
[18] Shiryaeva E. V., Zhukov M. Yu., Hodograph method and numerical solution of the two hyperbolic quasilinear equations. Part III. Two-beam reduction of the dense soliton gas equations, 2015, arXiv: 1512.06710