Interaction of weak discontinuities and the hodograph method as applied to electric field fractionation of a two-component mixture
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 8, pp. 1455-1469 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The hodograph method is used to construct a solution describing the interaction of weak discontinuities (rarefaction waves) for the problem of mass transfer by an electric field (zonal electrophoresis). Mathematically, the problem is reduced to the study of a system of two first-order quasilinear hyperbolic partial differential equations with data on characteristics (Goursat problem). The solution is constructed analytically in the form of implicit relations. An efficient numerical algorithm is described that reduces the system of quasilinear partial differential equations to ordinary differential equations. For the zonal electrophoresis equations, the Riemann problem with initial discontinuities specified at two different spatial points is completely solved.
@article{ZVMMF_2016_56_8_a7,
     author = {M. S. Elaeva and M. Yu. Zhukov and E. V. Shiryaeva},
     title = {Interaction of weak discontinuities and the hodograph method as applied to electric field fractionation of a two-component mixture},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1455--1469},
     year = {2016},
     volume = {56},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_8_a7/}
}
TY  - JOUR
AU  - M. S. Elaeva
AU  - M. Yu. Zhukov
AU  - E. V. Shiryaeva
TI  - Interaction of weak discontinuities and the hodograph method as applied to electric field fractionation of a two-component mixture
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 1455
EP  - 1469
VL  - 56
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_8_a7/
LA  - ru
ID  - ZVMMF_2016_56_8_a7
ER  - 
%0 Journal Article
%A M. S. Elaeva
%A M. Yu. Zhukov
%A E. V. Shiryaeva
%T Interaction of weak discontinuities and the hodograph method as applied to electric field fractionation of a two-component mixture
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 1455-1469
%V 56
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_8_a7/
%G ru
%F ZVMMF_2016_56_8_a7
M. S. Elaeva; M. Yu. Zhukov; E. V. Shiryaeva. Interaction of weak discontinuities and the hodograph method as applied to electric field fractionation of a two-component mixture. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 8, pp. 1455-1469. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_8_a7/

[1] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii, Nauka, M., 1978

[2] Kurant R., Uravneniya s chastnymi proizvodnymi, Mir, M., 1964

[3] Copson E. T., “On the Riemann–Green function”, Arch. Ration. Mech. Anal., 1 (1958), 324–348 | DOI | MR | Zbl

[4] Ibragimov H. X., “Gruppovoi analiz obyknovennykh differentsialnykh uravnenii i printsip invariantnosti v matematicheskoi fizike”, Uspekhi matem. nauk, 47(286):4 (1992), 83–144 | MR | Zbl

[5] Bitsadze A. V., Nekotorye klassy uravnenii v chastnykh proizvodnykh, Nauka, M., 1981

[6] Kuznetsov N. N., “Nekotorye matematicheskie voprosy khromatografii”, Vychisl. metody i programmirovanie, 1967, no. 6, 242–258

[7] Ferapontov E. V., Tsarev S. P., “Sistemy gidrodinamicheskogo tipa, voznikayuschie v gazovoi khromatografii. Invarianty Rimana i tochnye resheniya”, Matem. modelirovanie, 3:2 (1991), 82–91

[8] Babskii V. G., Zhukov M. Yu., Yudovich V. I., Matematicheskaya teoriya elektroforeza: Primenenie k metodam fraktsionirovaniya biopolimerov, Naukova dumka, Kiev, 1983

[9] Zhukov M. Yu., Massoperenos elektricheskim polem, Izd. Rostovskogo Universiteta, Rostov-na-Donu, 2005

[10] Elaeva M. S., “Vzaimodeistvie silnykh i slabykh razryvov v zadache Rimana dlya giperbolicheskikh uravnenii”, Izv. vyssh. uchebn. zavedenii. Severo-kavkazskii region. Estestvennye nauki, 2010, no. 6, 14–19

[11] Elaeva M. S., “Issledovanie zonalnogo elektroforeza dvukhkomponentnoi smesi veschestv”, Matem. modelirovanie, 22:9 (2010), 146–160 | MR

[12] Elaeva M. S., Matematicheskoe modelirovanie kapillyarnogo zonalnogo elektroforeza, Dis. kand. fiz.-matem. nauk, YuFU, Rostov-na-Donu, 2011

[13] Elaeva M. S., “Razdelenie dvukhkomponentnoi smesi pod deistviem elektricheskogo polya”, Zh. vychisl. matem. i matem. fiz., 52:6 (2012), 1143–1159 | Zbl

[14] Pavlov M. V., Gamiltonov formalizm uravnenii elektroforeza. Integriruemye uravneniya gidrodinamiki, Prepr. im. L. D. Landau, M., 1987 | Zbl

[15] Shiryaeva E. V., Zhukov M. Yu., Hodograph method and numerical integration of two hyperbolic quasilinear equations. Part I. The shallow water equations, 2014, arXiv: 1410.2832

[16] Shiryaeva E. V., Zhukov M. Yu., Hodograph method and numerical solution of the two hyperbolic quasilinear equations system. Part II. Zonal electrophoresis equations, 2014, arXiv: 1503.01762

[17] Senashov S. I., Yakhno A., “Conservation laws, hodograph transformation and boundary value problems of plane plasticity”, SIGMA, 8 (2012), 071 | MR | Zbl

[18] Shiryaeva E. V., Zhukov M. Yu., Hodograph method and numerical solution of the two hyperbolic quasilinear equations. Part III. Two-beam reduction of the dense soliton gas equations, 2015, arXiv: 1512.06710