@article{ZVMMF_2016_56_8_a4,
author = {Sh. I. Galiev and M. S. Lisafina},
title = {Numerical optimization method for packing regular convex polygons},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1416--1427},
year = {2016},
volume = {56},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_8_a4/}
}
TY - JOUR AU - Sh. I. Galiev AU - M. S. Lisafina TI - Numerical optimization method for packing regular convex polygons JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2016 SP - 1416 EP - 1427 VL - 56 IS - 8 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_8_a4/ LA - ru ID - ZVMMF_2016_56_8_a4 ER -
Sh. I. Galiev; M. S. Lisafina. Numerical optimization method for packing regular convex polygons. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 8, pp. 1416-1427. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_8_a4/
[1] Lodi A., Martello S., Monaci M., “Two-dimensional packing problems: a survey”, European J. Operat. Research, 141 (2002), 241–252 | DOI | MR | Zbl
[2] CoQman E. G., Garey M. R., Johnson D. S., “Approximation algorithms for bin packing: a survey”, Approximation Algorithms, ed. Hochbaum D., PWS Publishing Company, 1997
[3] Mukhacheva E. A., Mukhacheva A. S., “L. V. Kantorovich i zadachi raskroya-upakovki: novye podkhody dlya resheniya kombinatornykh zadach lineinogo raskroya i pryamougolnoi upakovki”, Zapiski nauch. sem. POMI, 312, 2004, 239–255
[4] Gilmore P. C., Gomery R. E., “A linear approach to the cutting-stock problem”, Operations Research, 9 (1961), 849–859 | DOI | MR | Zbl
[5] Carvalho J., “Lp models for bin packing and cutting stock problems”, European J. Operat. Research, 141 (2002), 253–273 | DOI | MR | Zbl
[6] Casazza M., Ceselli A., “Mathematical programming algorithms for bin packing problems with item fragmentation”, Computers Operations Research, 46 (2014), 1–11 | DOI | MR
[7] Bortfeldt A., “A genetic algorithm for the two-dimensional strip packing problem with rectangular pieces”, Eur. J. Oper. Research, 172 (2006), 814–837 | DOI | MR | Zbl
[8] Bortfeldt A., Hermann G., “A Parallel genetic algorithm for solving the container loading troblem”, Internat. Trans. in Operat. Research, 9:4 (2002), 397 | MR
[9] Mukhacheva F. S., Chiglintsev A. V., Smagin M. A., Mukhacheva E. A., “Zadachi dvumernoi upakovki: razvitie geneticheskikh algoritmov na baze smeshannykh protsedur lokalnogo poiska optimalnogo resheniya”, Prilozhenie k zhurnalu “Informatsionnye tekhnologii. Mashinostroenie”, 2001, no. 10
[10] Burke E. K., Kendall G., Whitwell G., “A new placement heuristic for the orthogonal stock-cutting problem”, Operations Research, 52:4 (2004), 655–671 | DOI | Zbl
[11] Huang W., Chen D., “An efficient heuristic algorithm for rectangle-packing problem”, Simulation Modelling Practice and Theory, 15 (2007), 1356–1365 | DOI
[12] Huang W., Chen D., Xu R., “A new heuristic algorithm for rectangle packing”, Computers Operat. Research, 34 (2007), 3270–3280 | DOI | MR | Zbl
[13] Cassioli A., Locatelli M., “A heuristic approach for packing identical rectangles in convex regions”, Computers Operat. Research, 38 (2011), 1342–1350 | DOI | MR | Zbl
[14] Poshyanonda P., Bahrami A., Dagli C. H., “Two dimensional nesting problem: artificial neural network and optimization approach Neural Networks”, International Joint Conference, 4:4 (1992), 572–577
[15] Zhuk C. H., “Priblizhennye algoritmy upakovki pryamougolnikov v neskolko polos”, Diskretnaya matem., 18:1 (2006), 91–105 | DOI | Zbl
[16] Kozyurin N. N., Pospelov A. I., “Veroyatnostnyi analiz razlichnykh shelfovykh algoritmov upakovki pryamougolnikov v polosu”, Sb. trudov ISP RAN, Matem. metody i algoritmy, 12, 2006, 17–26 | Zbl
[17] Stoyan Y., Scheithauer G., Gil N., Romanova T., “$\Phi$-functions for complex $\mathrm{2D}$-objects”, 40R: Quarterly J. Belgian, French and Italian Operations Research Soc., 2 (2004), 69–84 | MR | Zbl
[18] Chernov N., Stoyan Yu., Romanova T., “Mathematical model and efficient algorithms for object packing problem”, Computational Geometry: Theory and Application, 43 (2010), 535–553 | DOI | MR | Zbl
[19] Fowler R. J., Paterson M. S., Tanimoto S. L., “Optirnal packing and covering in the plane are NP-complete”, Information Processing Letters, 12:3 (1981), 133–137 | DOI | MR | Zbl
[20] Leung T., Tarn C. S., Young G., Chin F., “Packing squares into square”, J. Parallel and Distributed Computing, 10:3 (1990), 271–275 | DOI | MR
[21] Kuzyurin N. N., “O slozhnosti postroeniya asimptoticheski optimalnykh pokrytii i upakovok”, Dokl. AN, 363:1 (1998), 11–13 | MR | Zbl
[22] Galiev Sh. I., Lisafina M. S., “Packing regular polygons into a bounded domain”, Abstract of V International Conference on Optimization Methods and Applications (Petrovac, Montenegro, September 28–October 4, 2014), 70–71
[23] Litvinichev I., Infante L., Espinosa E. L. O., “Using different norms in packing circular objects”, Intelligent Information and Database Systems, Lecture Notes in Computer Science, 9012, 2015, 540–548 | DOI
[24] Galiev Sh. I., Lisafina M. S., “Linear models for the approximate solution of the problem of packing equal circles into a given domain”, European J. Operat. Research, 230:3 (2013), 505–514 | DOI | MR | Zbl
[25] Galiev Sh. I., Lisafina M. S., “Chislennye metody optimizatsii upakovok ravnykh ortogonalno orientirovannykh ellipsov v pryamougolnuyu oblast”, Zh. vychisl. matem. i matem. fiz., 53:11 (2013), 1923–1938 | DOI | MR | Zbl
[26] Ward J. E., Wendel R. E., “Using block norms for location modeling”, Operation research, 33 (1985), 1074–1090 | DOI | MR | Zbl
[27] Rocafellar R. T., Convex analysis, Princeton University Press, Princeton, NY, 1970 | MR