Investigation of supercomputer capabilities for the scalable numerical simulation of computational fluid dynamics problems in industrial applications
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 8, pp. 1524-1535 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Two main issues of the efficient usage of computational fluid dynamics (CFD) in industrial applications — simulation of turbulence and speedup of computations — are analyzed. Results of the investigation of potentials of the eddy-resolving approaches to turbulence simulation in industrial applications with the use of arbitrary unstructured grids are presented. Algorithms for speeding up the scalable high-performance computations based on multigrid technologies are proposed.
@article{ZVMMF_2016_56_8_a12,
     author = {A. S. Kozelkov and V. V. Kurulin and S. V. Lashkin and R. M. Shagaliev and A. V. Yalozo},
     title = {Investigation of supercomputer capabilities for the scalable numerical simulation of computational fluid dynamics problems in industrial applications},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1524--1535},
     year = {2016},
     volume = {56},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_8_a12/}
}
TY  - JOUR
AU  - A. S. Kozelkov
AU  - V. V. Kurulin
AU  - S. V. Lashkin
AU  - R. M. Shagaliev
AU  - A. V. Yalozo
TI  - Investigation of supercomputer capabilities for the scalable numerical simulation of computational fluid dynamics problems in industrial applications
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 1524
EP  - 1535
VL  - 56
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_8_a12/
LA  - ru
ID  - ZVMMF_2016_56_8_a12
ER  - 
%0 Journal Article
%A A. S. Kozelkov
%A V. V. Kurulin
%A S. V. Lashkin
%A R. M. Shagaliev
%A A. V. Yalozo
%T Investigation of supercomputer capabilities for the scalable numerical simulation of computational fluid dynamics problems in industrial applications
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 1524-1535
%V 56
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_8_a12/
%G ru
%F ZVMMF_2016_56_8_a12
A. S. Kozelkov; V. V. Kurulin; S. V. Lashkin; R. M. Shagaliev; A. V. Yalozo. Investigation of supercomputer capabilities for the scalable numerical simulation of computational fluid dynamics problems in industrial applications. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 8, pp. 1524-1535. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_8_a12/

[1] Mozer D., Kim J., Mansour N. N., “DNS of turbulent channel flow”, Phys. Fluids, 11 (1999), 943–945 | DOI

[2] Lesieur M., Turbulence in fluids, Springer, Berlin, 2008 | MR | Zbl

[3] Volkov K. N., Emelyanov V. N., Techeniya i teploobmen v kanalakh i vraschayuschikhsya polostyakh, Fizmatlit, M., 2010

[4] Spalart P. R., “Strategies for turbulence modeling and simulations”, Heat Fluid Flow, 21 (2000), 252–263 | DOI

[5] Spalart P. R., Young-Person's guide to detached-eddy simulation grids, Tech. Rept. NASA/CR-2001-211032, NASA, Langley Research Center, 2001

[6] Travin A., Shur M., Strelets M., Spalart P. R., “Physical and numerical upgrades in the detached-eddy simulation of complex turbulent flows”, Proc. Euromech Coll. Les of complex transitional and turbulent flows, 65, Kluwer, Munich, Germany, 2002, 239–254 | Zbl

[7] Revell A., Craft T., Laurence D., “Turbulence modelling of strongly detached unsteady glows”, The Circular Cylinder, 97 (2008), 279–288 | MR

[8] Kozelkov A. S., Kurulin V. V., Tyatyushkina E. S., Puchkova O. L., “Modelirovanie turbulentnykh techenii vyazkoi neszhimaemoi zhidkosti na nestrukturirovannykh setkakh s ispolzovaniem modeli otsoedinennykh vikhrei”, Matem. modelirovanie, 26:8 (2014), 81–96

[9] Zaikov L. A., Strelets M. Kh., Shur M. L., “Sravnenie vozmozhnostei differentsialnykh modelei turbulentnosti s odnim i dvumya uravneniyami pri raschete techenii s otryvom i prisoedineniem. Techenie v kanalakh s obratnym ustupom”, Teplofiz. vysokikh temperatur, 34:35 (1996), 724–736

[10] Vogel J. C., Eaton J. K., “Combined heat transfer and fluid dynamic measurements downstream of a backward-facing step”, J. Heat Transfer, 107 (1985), 922–929 | DOI

[11] Gritskevich M. S., Garbaruk A. V., Schütze J., Menter F. R., “Development of DDES and IDDES formulations for the $k$-$\omega$ shear stress transport model”, Flow Turbulence Combust, 2011

[12] Piomelli U., Balaras E., “Wall-layer models for large-eddy simulations”, Annual Review of Fluid Mech., 34:1 (2002), 349–374 | DOI | MR | Zbl

[13] Odemark Y. et al., “High-cycle thermal fatigue in mixing tees: New Large-Eddy Simiulations Validated Against New Data Obtained by PIV in the Vattenfall Experiment”, Proc. the 17th Internat. Conference on Nuclear Engng. (2009)

[14] Aljure D. E. et al., “Flow and turbulent structures around simplified car models”, Computers Fluids, 96 (2014), 122–135 | DOI

[15] Spalart P. R., “Detached-Eddy Simulation”, Annual Rev. Fluid Mech., 41 (2009), 181–202 | DOI | Zbl

[16] Jarrin N., Prosser R., Uribe J. et al., “Reconstruction of turbulent fluctuations for hybrid RANS/LES simulations using a Synthetic-Eddy Method”, Internat. J. Heat and Fluid Flow, 30:3 (2009), 435–442 | DOI

[17] Adamyan D. Yu., “Effektivnyi metod generatsii sinteticheskoi turbulentnosti na vkhodnykh granitsakh LES oblasti v ramkakh kombinirovannykh RANS-LES podkhodov k raschetu turbulentnykh techenii”, Matem. modelirovanie, 23:7 (2011), 3–19

[18] Menter F. R., “Two-equation eddy-viscosity turbulence models for engineering applications”, AIAA Journal, 32:8 (1994), 1598–1605 | DOI

[19] Menter F. R., Garbaruk A. V., Egorov Y., “Explicit algebraic Reynolds stress models for anisotropic wall-bounded flows”, Proc. of 3rd European Conference for Aero-Space Sci., EUCASS (Versailles, July 6–9th, 2009)

[20] Kozelkov A. S., Kurulin V. V., Puchkova O. L., Lashkin S. V., “Modelirovanie turbulentnykh techenii s ispolzovaniem algebraicheskoi modeli reinoldsovykh napryazhenii s universalnymi pristenochnymi funktsiyami”, Vychisl. mekhan. sploshnykh sred, 7:1 (2014), 40–51

[21] Kurulin V. V., Kozelkov A. S., Tyatyushkina E. S., Puchkova O. L., “Zonnyi RANS-LES podkhod na osnove algebraicheskoi modeli reinoldsovykh napryazhenii”, Izvestiya RAN. Mekhan. zhidkosti i gaza, 2015, no. 5, 24–33

[22] Stuben K., Trottenberg U., “Multigrid methods: fundamental algorithms, model problem analysis and applications”, Multigrid Methods, Lecture Notes in Mathematics, 960, eds. W. Hackbusch, U. Trottenberg, Springer, Berlin, 1982, 1–176 | DOI | MR

[23] Volkov K. N., Deryugin Yu. N., Emelyanov V. N., Karpenko A. G., Kozelkov A. S., Teterina I. V., Metody uskoreniya gazodinamicheskikh raschetov na nestrukturirovannykh setkakh, Fizmatlit, M., 2013, 536 pp.

[24] Kozelkov A. S., Deryugin Yu. N., Lashkin S. V., Silaev D. P., Simonov P. G., Tyatyushkina E. S., “Realizatsiya metoda rascheta vyazkoi neszhimaemoi zhidkosti s ispolzovaniem mnogosetochnogo metoda na osnove algoritma SIMPLE v pakete programm LOGOS”, Zh. VANT. Ser. Matem. modelirovanie fiz. protsessov, 2013, no. 4, 44–56