Direct simulation of the turbulent boundary layer on a plate
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 8, pp. 1506-1523 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A numerical method for the integration of three-dimensional Navier–Stokes equations for compressible fluid as applied to direct numerical simulation is proposed. By way of example, the boundary layer on a plate is simulated. The computations were carried out for $\mathrm{Re}_{\theta}=1500$. The computational grid consisted of a half billion nodes. The flow region includes the laminar, transitional, and turbulent zones. The numerically obtained distributions of average velocity, friction, and pulsations are compared with experimental data and available numerical solutions.
@article{ZVMMF_2016_56_8_a11,
     author = {V. G. Krupa},
     title = {Direct simulation of the turbulent boundary layer on a plate},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1506--1523},
     year = {2016},
     volume = {56},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_8_a11/}
}
TY  - JOUR
AU  - V. G. Krupa
TI  - Direct simulation of the turbulent boundary layer on a plate
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 1506
EP  - 1523
VL  - 56
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_8_a11/
LA  - ru
ID  - ZVMMF_2016_56_8_a11
ER  - 
%0 Journal Article
%A V. G. Krupa
%T Direct simulation of the turbulent boundary layer on a plate
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 1506-1523
%V 56
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_8_a11/
%G ru
%F ZVMMF_2016_56_8_a11
V. G. Krupa. Direct simulation of the turbulent boundary layer on a plate. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 8, pp. 1506-1523. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_8_a11/

[1] Kachanov Y. S., Levchenko Y. Y., “The resonant interaction of disturbances at laminar-turbulent transition in a boundary layer”, J. Fluid Mech., 138 (1984), 209–247 | DOI

[2] Spalart P. R., “Direct simulation of a turbulent boundary layer up to $\mathrm{Re}_{\theta}=1410$”, J. Fluid Mech., 187 (1988), 61–98 | DOI | Zbl

[3] Rai M. M., Moin P., “Direct numerical simulation of transition and turbulence in a spatially evolving boundary layer”, J. Comput. Phys., 109 (1993), 169–192 | DOI | Zbl

[4] Wu X., Jacobs R., Hunt J. C. R., Durbin P. A., “Simulation of boundary layer transition induced by periodically passing wakes”, J. Fluid Mech., 398 (1999), 109–153 | DOI | Zbl

[5] Spalart P. R., Moser R. O., Rogers M. M., “Spectral methods for the Navier–Stokes equations with one infinite and two periodic directions”, J. Comput. Phys., 96 (1991), 296–324 | DOI | MR

[6] Jacobs R. O., Durbin P. A., “Simulation of bypass transition”, J. Fluid Mech., 428 (2001), 185–212 | DOI | Zbl

[7] Zaki T. A., Durbin P. A., “Mode interaction and the bypass route to transition”, J. Fluid Mech., 531 (2005), 85–111 | DOI | MR | Zbl

[8] Ovchinnikov Y., Piomelli U., Choudhari M. M., “Numerical simulations of boundary-Iayer transition induced by a cylinder wake”, J. Fluid Mech., 547 (2006), 413–441 | DOI | Zbl

[9] Brandt L., Schlatter P., Henningson D. S., “Transition in boundary layers subject to free-stream turbulence”, J. Fluid Mech., 517 (2004), 167–198 | DOI | MR | Zbl

[10] Wu X., Moin P., “Direct numerical simulation of turbulence in a nominally zero-pressure-gradient flat-plate boundary layer”, J. Fluid Mech., 630 (2009), 5–41 | DOI | MR | Zbl

[11] Fasel H. F., Rist U., Konzelmann U., “Numerical investigation of three dimensional development in boundary-layer transition”, AIAA, 28:1 (1990), 29–37 | DOI | MR

[12] Klebanoff P. S., Tidstrom K. D., Sargent L. M., “The three-dimensional nature of boundary-layer instability”, J. Fluid Mech., 12 (1962), 1–34 | DOI | Zbl

[13] Harten A., Engquist B., Osher S., Chakravarthy S., “Uniformly high order essentially non-oscillatory schemes, III”, J. Comput. Phys., 71 (1987), 231–303 | DOI | MR | Zbl

[14] Liu X.-D., Osher S., Chan T., “Weighted essentially non-oscillatory schemes”, J. Comput. Phys., 115 (1994), 200–212 | DOI | MR | Zbl

[15] Krupa V. G., “Skhemy proizvolnogo poryadka tochnosti dlya giperbolicheskikh uravnenii”, Teoreticheskie osnovy i konstruirovanie chislennykh algoritmov resheniya zadach matematicheskoi fiziki, Tezisy dokl. na XII Vseros. konf. (1998)

[16] Krupa V. G., “O postroenii raznostnykh skhem povyshennogo poryadka tochnosti dlya giperbolicheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 38:1 (1998), 85–98 | MR | Zbl

[17] Khairer V., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii, Mir, M., 1999

[18] Coakley T. J., “Implicit upwind methods for the compressible Navier–Stokes equations”, AIAA Journal, 23:3 (1985), 374–380 | DOI | Zbl

[19] Shlikhting G., Teoriya pogranichnogo sloya, Nauka, M., 1969

[20] Murlis J., Tsai H. M., Bradshaw P., “The structure of turbulent boundary layers at low Reynolds numbers”, J. Fluid Mech., 122 (1982), 13–56 | DOI

[21] Purtell L. P., Klebanoff P. S., Buckley F. T., “Turbulent boundary layer at low Reynolds number”, Phys. Fluids, 24 (1981), 802–811 | DOI

[22] Prandtl L., Gidroaeromekhanika, NITs Regulyarnaya i khaoticheskaya dinamika, 2000

[23] Smith R. W., Effect of Reynolds number on the structure of turbulent boundary layers, PhD thesis, Depart. Mech. and Aerospace Eng-ng Princeton University, 1994

[24] DeGraaff D. B., Eaton J. K., “Reynolds-number scaling of the flat-plate turbulent boundary layer”, J. Fluid Mech., 422 (2000), 319–346 | DOI | Zbl

[25] Erm L. P., Smits A. J., Joubert P. N., “Low Reynolds number turbulent boundary layers on a smooth flat surface in a zero pressure gradient”, Proc. fifth Symposium on Turbulent Shear Flows (Ithaca, N.Y.), 1985

[26] Honkan A., Andreopoulos Y., “Vorticity strain-rate and dissipation characteristics in the near-wall region of turbulent boundary layers”, J. Fluid Mech., 350 (1997), 29–96 | DOI | MR

[27] Meinhart C. D., Adrian R. J., Measurements of zero-pressure-gradient turbulent boundary layer using particle image velocimetry, AIAA Paper 95-0789, 1995

[28] Balint J.-M., Wallace J. M., Vukoslavcevic P., “The velocity and vorticity vector fields of a turbulent boundary layer. Part 2. Statistical properties”, J. Fluid Mech., 228 (1991), 53–86

[29] Bruns J., Dengel P., Ferholz H. H., Mean flow and turbulence measurements in an incompressible two-dimensional boundary layer. Part I. Data Hermann-Fottinger-Institut fur Thermo- und Fluiddynamik, Rep. 02/92, Technische Universitat Berlin, 1992

[30] Andreopoulos J., Durst F., Zaric Z., Jovanovic J., “Influence of Reynolds number on characteristics of turbulent wall boundary layers”, Exps. Fluids, 2 (1984), 7–16 | DOI

[31] Choi H., Moin P., “On the space-time characteristics of wall-pressure fluctuations”, Phys. Fluids J., 2 (1990), 1450–1460 | DOI