@article{ZVMMF_2016_56_8_a11,
author = {V. G. Krupa},
title = {Direct simulation of the turbulent boundary layer on a plate},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1506--1523},
year = {2016},
volume = {56},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_8_a11/}
}
V. G. Krupa. Direct simulation of the turbulent boundary layer on a plate. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 8, pp. 1506-1523. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_8_a11/
[1] Kachanov Y. S., Levchenko Y. Y., “The resonant interaction of disturbances at laminar-turbulent transition in a boundary layer”, J. Fluid Mech., 138 (1984), 209–247 | DOI
[2] Spalart P. R., “Direct simulation of a turbulent boundary layer up to $\mathrm{Re}_{\theta}=1410$”, J. Fluid Mech., 187 (1988), 61–98 | DOI | Zbl
[3] Rai M. M., Moin P., “Direct numerical simulation of transition and turbulence in a spatially evolving boundary layer”, J. Comput. Phys., 109 (1993), 169–192 | DOI | Zbl
[4] Wu X., Jacobs R., Hunt J. C. R., Durbin P. A., “Simulation of boundary layer transition induced by periodically passing wakes”, J. Fluid Mech., 398 (1999), 109–153 | DOI | Zbl
[5] Spalart P. R., Moser R. O., Rogers M. M., “Spectral methods for the Navier–Stokes equations with one infinite and two periodic directions”, J. Comput. Phys., 96 (1991), 296–324 | DOI | MR
[6] Jacobs R. O., Durbin P. A., “Simulation of bypass transition”, J. Fluid Mech., 428 (2001), 185–212 | DOI | Zbl
[7] Zaki T. A., Durbin P. A., “Mode interaction and the bypass route to transition”, J. Fluid Mech., 531 (2005), 85–111 | DOI | MR | Zbl
[8] Ovchinnikov Y., Piomelli U., Choudhari M. M., “Numerical simulations of boundary-Iayer transition induced by a cylinder wake”, J. Fluid Mech., 547 (2006), 413–441 | DOI | Zbl
[9] Brandt L., Schlatter P., Henningson D. S., “Transition in boundary layers subject to free-stream turbulence”, J. Fluid Mech., 517 (2004), 167–198 | DOI | MR | Zbl
[10] Wu X., Moin P., “Direct numerical simulation of turbulence in a nominally zero-pressure-gradient flat-plate boundary layer”, J. Fluid Mech., 630 (2009), 5–41 | DOI | MR | Zbl
[11] Fasel H. F., Rist U., Konzelmann U., “Numerical investigation of three dimensional development in boundary-layer transition”, AIAA, 28:1 (1990), 29–37 | DOI | MR
[12] Klebanoff P. S., Tidstrom K. D., Sargent L. M., “The three-dimensional nature of boundary-layer instability”, J. Fluid Mech., 12 (1962), 1–34 | DOI | Zbl
[13] Harten A., Engquist B., Osher S., Chakravarthy S., “Uniformly high order essentially non-oscillatory schemes, III”, J. Comput. Phys., 71 (1987), 231–303 | DOI | MR | Zbl
[14] Liu X.-D., Osher S., Chan T., “Weighted essentially non-oscillatory schemes”, J. Comput. Phys., 115 (1994), 200–212 | DOI | MR | Zbl
[15] Krupa V. G., “Skhemy proizvolnogo poryadka tochnosti dlya giperbolicheskikh uravnenii”, Teoreticheskie osnovy i konstruirovanie chislennykh algoritmov resheniya zadach matematicheskoi fiziki, Tezisy dokl. na XII Vseros. konf. (1998)
[16] Krupa V. G., “O postroenii raznostnykh skhem povyshennogo poryadka tochnosti dlya giperbolicheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 38:1 (1998), 85–98 | MR | Zbl
[17] Khairer V., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii, Mir, M., 1999
[18] Coakley T. J., “Implicit upwind methods for the compressible Navier–Stokes equations”, AIAA Journal, 23:3 (1985), 374–380 | DOI | Zbl
[19] Shlikhting G., Teoriya pogranichnogo sloya, Nauka, M., 1969
[20] Murlis J., Tsai H. M., Bradshaw P., “The structure of turbulent boundary layers at low Reynolds numbers”, J. Fluid Mech., 122 (1982), 13–56 | DOI
[21] Purtell L. P., Klebanoff P. S., Buckley F. T., “Turbulent boundary layer at low Reynolds number”, Phys. Fluids, 24 (1981), 802–811 | DOI
[22] Prandtl L., Gidroaeromekhanika, NITs Regulyarnaya i khaoticheskaya dinamika, 2000
[23] Smith R. W., Effect of Reynolds number on the structure of turbulent boundary layers, PhD thesis, Depart. Mech. and Aerospace Eng-ng Princeton University, 1994
[24] DeGraaff D. B., Eaton J. K., “Reynolds-number scaling of the flat-plate turbulent boundary layer”, J. Fluid Mech., 422 (2000), 319–346 | DOI | Zbl
[25] Erm L. P., Smits A. J., Joubert P. N., “Low Reynolds number turbulent boundary layers on a smooth flat surface in a zero pressure gradient”, Proc. fifth Symposium on Turbulent Shear Flows (Ithaca, N.Y.), 1985
[26] Honkan A., Andreopoulos Y., “Vorticity strain-rate and dissipation characteristics in the near-wall region of turbulent boundary layers”, J. Fluid Mech., 350 (1997), 29–96 | DOI | MR
[27] Meinhart C. D., Adrian R. J., Measurements of zero-pressure-gradient turbulent boundary layer using particle image velocimetry, AIAA Paper 95-0789, 1995
[28] Balint J.-M., Wallace J. M., Vukoslavcevic P., “The velocity and vorticity vector fields of a turbulent boundary layer. Part 2. Statistical properties”, J. Fluid Mech., 228 (1991), 53–86
[29] Bruns J., Dengel P., Ferholz H. H., Mean flow and turbulence measurements in an incompressible two-dimensional boundary layer. Part I. Data Hermann-Fottinger-Institut fur Thermo- und Fluiddynamik, Rep. 02/92, Technische Universitat Berlin, 1992
[30] Andreopoulos J., Durst F., Zaric Z., Jovanovic J., “Influence of Reynolds number on characteristics of turbulent wall boundary layers”, Exps. Fluids, 2 (1984), 7–16 | DOI
[31] Choi H., Moin P., “On the space-time characteristics of wall-pressure fluctuations”, Phys. Fluids J., 2 (1990), 1450–1460 | DOI