Numerical analysis of the dynamics of distributed vortex configurations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 8, pp. 1491-1505 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A numerical algorithm is proposed for analyzing the dynamics of distributed plane vortex configurations in an inviscid incompressible fluid. At every time step, the algorithm involves the computation of unsteady vortex flows, an analysis of the configuration structure with the help of heuristic criteria, the visualization of the distribution of marked particles and vorticity, the construction of streamlines of fluid particles, and the computation of the field of local Lyapunov exponents. The inviscid incompressible fluid dynamic equations are solved by applying a meshless vortex method. The algorithm is used to investigate the interaction of two and three identical distributed vortices with various initial positions in the flow region with and without the Coriolis force.
@article{ZVMMF_2016_56_8_a10,
     author = {V. N. Govorukhin},
     title = {Numerical analysis of the dynamics of distributed vortex configurations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1491--1505},
     year = {2016},
     volume = {56},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_8_a10/}
}
TY  - JOUR
AU  - V. N. Govorukhin
TI  - Numerical analysis of the dynamics of distributed vortex configurations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 1491
EP  - 1505
VL  - 56
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_8_a10/
LA  - ru
ID  - ZVMMF_2016_56_8_a10
ER  - 
%0 Journal Article
%A V. N. Govorukhin
%T Numerical analysis of the dynamics of distributed vortex configurations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 1491-1505
%V 56
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_8_a10/
%G ru
%F ZVMMF_2016_56_8_a10
V. N. Govorukhin. Numerical analysis of the dynamics of distributed vortex configurations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 8, pp. 1491-1505. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_8_a10/

[1] Andronov A. A., Pontryagin L. S., “Grubye sistemy”, Dokl. AN SSSR, 14:5 (1937), 247–251

[2] Arnold V. I., Afraimovich V. S., Ilyashenko Yu. S., Shilnikov L. P., “Teoriya bifurkatsii”, Dinamicheskie sistemy-5, Itogi nauki i tekhn. Ser. Sovrem, probl. matem. Fundam. napravleniya, 5, VINITI, M., 1986, 5–218

[3] Arnold V. I., Teoriya katastrof, Nauka, M., 1990

[4] Tian Ma, Shouhong Wang, Geometric theory of incompressible flows with applications to fluid dynamics, American Mathematical Soc., 2005 | MR | Zbl

[5] Pedloski D., Geofizicheskaya gidrodinamika, v. 1, 2, Mir, M., 1984 | MR

[6] Dolzhanskii F. V., Lektsii po geofizicheskoi gidrodinamike, Izd-vo IVM RAN, M., 2006, 378

[7] Lamb G., Gidrodinamika, Gos. izd-vo tekhn.-teor. lit., M.–L., 1947

[8] Govorukhin V. N., Il'in K. I., “Numerical study of an inviscid incompressible flow through a channel of finite length”, Int. J. Numer. Meth. Fluids, 60:12 (2009), 1315–1333 | DOI | MR | Zbl

[9] Govorukhin V. H., “Variant metoda vikhrei v yacheikakh dlya rascheta ploskikh techenii idealnoi neszhimaemoi zhidkosti”, Zh. vychisl. matem. i matem. fiz., 51:6 (2011), 1133–1147 | MR | Zbl

[10] Govorukhin V. N., “A Meshfree method for the analysis of planar flows of inviscid fluids”, Meshfree Methods for Partial Differential Equations VI, Lecture Notes in Comput. Sci. Engng., 89, eds. M. Griebel, M. A. Schweitzer, Springer, Berlin, 2013, 171–180 | DOI | MR | Zbl

[11] Aubry A., Chartier P., “Pseudo-symplectic Runge–Kutta methods”, BIT, 38:3 (1998), 439–461 | DOI | MR | Zbl

[12] Govorukhin V. N., “O vybore metoda integrirovaniya uravnenii dvizheniya mnozhestva zhidkikh chastits”, Zh. vychisl. matem. i matem. fiz., 54:4 (2014), 177–190 | MR

[13] Kirkhgof G., Mekhanika. Lektsii po matematicheskoi fizike, AN SSSR, M., 1962

[14] Konovalyuk T., “Vzaimodeistvie ellipticheskikh vikhrei”, Prikl. gidromekhan., 7:2 (2005), 44–53 | MR | Zbl

[15] Dritschel D. G., “A general theory for two-dimensional vortex interactions”, J. Fluid Mech., 293 (1995), 269–303 | DOI | MR | Zbl

[16] Meunier P., Ehrenstein U., Leweke T., Rossi M., “A merging criterion for two-dimensional co-rotating vortices”, Phys. of Fluids, 14:8 (2002), 2757–2766 | DOI | MR

[17] Meunier P., Le Dizes S., Leweke T., “Physics of vortex merging”, Comp. Rendus Physique, 6:4–5, spec. iss. (2005), 431–450 | DOI

[18] Pierrehumbert R., Yang H., “Global chaotic mixing on isentropic surfaces”, J. Atmospheric Sci., 50:15 (1993), 2462–2480 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR

[19] Shadden S., Lekien F., Marsden J., “Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows”, Phys. D: Nonlinear Phenomena, 212:3–4 (2005), 271–304 | DOI | MR | Zbl

[20] Haller G., “Finding finite-time invariant manifolds in two-dimensional velocity fields”, Chaos, 10:1 (2000), 99–108 | DOI | MR | Zbl

[21] Plotka H., Dritschel D. G., “Quasi-geostrophic shallow-water doubly-connected vortex equilibria and their stability”, J. Fluid Mech., 723 (2013), 40–68 | DOI | MR | Zbl