@article{ZVMMF_2016_56_8_a10,
author = {V. N. Govorukhin},
title = {Numerical analysis of the dynamics of distributed vortex configurations},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1491--1505},
year = {2016},
volume = {56},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_8_a10/}
}
TY - JOUR AU - V. N. Govorukhin TI - Numerical analysis of the dynamics of distributed vortex configurations JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2016 SP - 1491 EP - 1505 VL - 56 IS - 8 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_8_a10/ LA - ru ID - ZVMMF_2016_56_8_a10 ER -
V. N. Govorukhin. Numerical analysis of the dynamics of distributed vortex configurations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 8, pp. 1491-1505. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_8_a10/
[1] Andronov A. A., Pontryagin L. S., “Grubye sistemy”, Dokl. AN SSSR, 14:5 (1937), 247–251
[2] Arnold V. I., Afraimovich V. S., Ilyashenko Yu. S., Shilnikov L. P., “Teoriya bifurkatsii”, Dinamicheskie sistemy-5, Itogi nauki i tekhn. Ser. Sovrem, probl. matem. Fundam. napravleniya, 5, VINITI, M., 1986, 5–218
[3] Arnold V. I., Teoriya katastrof, Nauka, M., 1990
[4] Tian Ma, Shouhong Wang, Geometric theory of incompressible flows with applications to fluid dynamics, American Mathematical Soc., 2005 | MR | Zbl
[5] Pedloski D., Geofizicheskaya gidrodinamika, v. 1, 2, Mir, M., 1984 | MR
[6] Dolzhanskii F. V., Lektsii po geofizicheskoi gidrodinamike, Izd-vo IVM RAN, M., 2006, 378
[7] Lamb G., Gidrodinamika, Gos. izd-vo tekhn.-teor. lit., M.–L., 1947
[8] Govorukhin V. N., Il'in K. I., “Numerical study of an inviscid incompressible flow through a channel of finite length”, Int. J. Numer. Meth. Fluids, 60:12 (2009), 1315–1333 | DOI | MR | Zbl
[9] Govorukhin V. H., “Variant metoda vikhrei v yacheikakh dlya rascheta ploskikh techenii idealnoi neszhimaemoi zhidkosti”, Zh. vychisl. matem. i matem. fiz., 51:6 (2011), 1133–1147 | MR | Zbl
[10] Govorukhin V. N., “A Meshfree method for the analysis of planar flows of inviscid fluids”, Meshfree Methods for Partial Differential Equations VI, Lecture Notes in Comput. Sci. Engng., 89, eds. M. Griebel, M. A. Schweitzer, Springer, Berlin, 2013, 171–180 | DOI | MR | Zbl
[11] Aubry A., Chartier P., “Pseudo-symplectic Runge–Kutta methods”, BIT, 38:3 (1998), 439–461 | DOI | MR | Zbl
[12] Govorukhin V. N., “O vybore metoda integrirovaniya uravnenii dvizheniya mnozhestva zhidkikh chastits”, Zh. vychisl. matem. i matem. fiz., 54:4 (2014), 177–190 | MR
[13] Kirkhgof G., Mekhanika. Lektsii po matematicheskoi fizike, AN SSSR, M., 1962
[14] Konovalyuk T., “Vzaimodeistvie ellipticheskikh vikhrei”, Prikl. gidromekhan., 7:2 (2005), 44–53 | MR | Zbl
[15] Dritschel D. G., “A general theory for two-dimensional vortex interactions”, J. Fluid Mech., 293 (1995), 269–303 | DOI | MR | Zbl
[16] Meunier P., Ehrenstein U., Leweke T., Rossi M., “A merging criterion for two-dimensional co-rotating vortices”, Phys. of Fluids, 14:8 (2002), 2757–2766 | DOI | MR
[17] Meunier P., Le Dizes S., Leweke T., “Physics of vortex merging”, Comp. Rendus Physique, 6:4–5, spec. iss. (2005), 431–450 | DOI
[18] Pierrehumbert R., Yang H., “Global chaotic mixing on isentropic surfaces”, J. Atmospheric Sci., 50:15 (1993), 2462–2480 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR
[19] Shadden S., Lekien F., Marsden J., “Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows”, Phys. D: Nonlinear Phenomena, 212:3–4 (2005), 271–304 | DOI | MR | Zbl
[20] Haller G., “Finding finite-time invariant manifolds in two-dimensional velocity fields”, Chaos, 10:1 (2000), 99–108 | DOI | MR | Zbl
[21] Plotka H., Dritschel D. G., “Quasi-geostrophic shallow-water doubly-connected vortex equilibria and their stability”, J. Fluid Mech., 723 (2013), 40–68 | DOI | MR | Zbl