Algorithm for computing the covering constant of a linear operator on a cone
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 8, pp. 1385-1394 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An algorithm for computing the covering constant for the restriction of a linear operator to a cone defined by a finite set of inequalities is proposed. After a finite number of steps, the algorithm reduces the original problem to one of finding the eigenvalues of linear operators.
@article{ZVMMF_2016_56_8_a1,
     author = {S. E. Zhukovskiy and Z. T. Zhukovskaya},
     title = {Algorithm for computing the covering constant of a linear operator on a cone},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1385--1394},
     year = {2016},
     volume = {56},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_8_a1/}
}
TY  - JOUR
AU  - S. E. Zhukovskiy
AU  - Z. T. Zhukovskaya
TI  - Algorithm for computing the covering constant of a linear operator on a cone
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 1385
EP  - 1394
VL  - 56
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_8_a1/
LA  - ru
ID  - ZVMMF_2016_56_8_a1
ER  - 
%0 Journal Article
%A S. E. Zhukovskiy
%A Z. T. Zhukovskaya
%T Algorithm for computing the covering constant of a linear operator on a cone
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 1385-1394
%V 56
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_8_a1/
%G ru
%F ZVMMF_2016_56_8_a1
S. E. Zhukovskiy; Z. T. Zhukovskaya. Algorithm for computing the covering constant of a linear operator on a cone. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 8, pp. 1385-1394. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_8_a1/

[1] Dmitruk A. V., Milyutin A. A., Osmolovskii N. P., “Teorema Lyusternika i teoriya ekstremuma”, Uspekhi matem. nauk, 35:6 (1980), 11–46 | MR | Zbl

[2] Arutyunov A. V., “Nakryvayuschie otobrazheniya v metricheskikh prostranstvakh i nepodvizhnye tochki”, Dokl. AN, 417:2 (2007), 151–155 | MR | Zbl

[3] Arutyunov A. V., “Ustoichivost tochek sovpadeniya i svoistva nakryvayuschikh otobrazhenii”, Matem. zametki, 86:2 (2009), 163–169 | DOI | MR | Zbl

[4] Avakov E. R., Arutyunov A. V., Zhukovskii E. S., “Nakryvayuschie otobrazheniya i ikh prilozheniya k differentsialnym uravneniyam, ne razreshennym otnositelno proizvodnoi”, Differents. ur-niya, 45:5 (2009), 613–634 | MR

[5] Arutyunov A. V., Zhukovskii E. S., Zhukovskii S. E., “O korrektnosti differentsialnykh uravnenii, ne razreshennykh otnositelno proizvodnoi”, Differents. ur-niya, 47:11 (2011), 1523–1537 | MR | Zbl

[6] Ioffe A. D., “Metricheskaya regulyarnost i subdifferentsialnoe ischislenie”, Uspekhi matem. nauk, 2000, no. 3(333), 103–162 | DOI

[7] Mordukhovich B. S., Variational analysis and generalized differentiation, v. 1, Springer, N.Y., 2005 | MR | Zbl

[8] Zhukovskii S. E., “O nakryvayuschikh svoistvakh suzhenii otobrazhenii metricheskikh prostranstv”, Vestnik Tambovskogo un-ta. Cep. Estestvennye i tekhnicheskie nauki, 17:3 (2012), 852–856

[9] Vasilev F. P., Metody optimizatsii, v. I, Izd. MTsNMO, M., 2011

[10] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1984