@article{ZVMMF_2016_56_7_a7,
author = {I. A. Blatov and N. V. Dobrobog and E. V. Kitaeva},
title = {Conditional $\varepsilon$-uniform boundedness of {Galerkin} projectors and convergence of an adaptive mesh method as applied to singularly perturbed boundary value problems},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1323--1334},
year = {2016},
volume = {56},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_7_a7/}
}
TY - JOUR AU - I. A. Blatov AU - N. V. Dobrobog AU - E. V. Kitaeva TI - Conditional $\varepsilon$-uniform boundedness of Galerkin projectors and convergence of an adaptive mesh method as applied to singularly perturbed boundary value problems JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2016 SP - 1323 EP - 1334 VL - 56 IS - 7 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_7_a7/ LA - ru ID - ZVMMF_2016_56_7_a7 ER -
%0 Journal Article %A I. A. Blatov %A N. V. Dobrobog %A E. V. Kitaeva %T Conditional $\varepsilon$-uniform boundedness of Galerkin projectors and convergence of an adaptive mesh method as applied to singularly perturbed boundary value problems %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2016 %P 1323-1334 %V 56 %N 7 %U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_7_a7/ %G ru %F ZVMMF_2016_56_7_a7
I. A. Blatov; N. V. Dobrobog; E. V. Kitaeva. Conditional $\varepsilon$-uniform boundedness of Galerkin projectors and convergence of an adaptive mesh method as applied to singularly perturbed boundary value problems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 7, pp. 1323-1334. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_7_a7/
[1] Natterer F., “Uniform convergence of Galerkin method for splines on highly nonuniform meshes”, Math. Comput., 31 (1977), 547–468 | MR
[2] Blatov I. A., Strygin V. V., “On best possible order of convergence estimates in the collocation method and Galerkin's method for singularly perturbed boundary value problems for systems of first order ordinary differential equations”, Math. Comput., 68 (1999), 683–715 | DOI | MR | Zbl
[3] Liseikin V. D., Metody postroeniya setok, Springer, 1999
[4] Gilmanov A. N., Metody adaptivnykh setok v zadachakh gazovoi dinamiki, Fizmatlit, M., 2000
[5] Linss T., Lauer-adapted meshes for reaction-convection-diffusion problems, Springer, 2010 | MR
[6] Roos H. G., Stynes M., “Some open question in the numerical analysis of sindularly perturbed differential equations”, Computation Methods in Applied Mathematics, 2015, no. 5 | DOI | MR
[7] Kopteva N., Stynes M., “A robust adaptive method for a quasi-linear one-dimensional convection-diffusion problem”, SIAM J. Numer. Anal., 39 (2001), 1146–1467 | DOI | MR
[8] Chadha N. M., Kopteva N., “A robust grid equidistribution method for a one-dimensional singularly perturbed semilinear reaction-diffusion problem”, IMA J. Numer. Anal., 31 (2011), 188–211 | DOI | MR | Zbl
[9] Shishkin G. I., “Setochnaya approksimatsiya singulyarno vozmuschennykh kraevykh zadach na lokalno pereizmelchaemykh setkakh. Uravneniya konvektsii-diffuzii”, Zh. vychisl. matem. i matem. fiz., 40:5 (2000), 714–725 | MR | Zbl
[10] Shishkin G. I., “Setochnaya approksimatsiya parabolicheskogo uravneniya konvektsii-diffuzii na apriorno adaptiruyuschikhsya setkakh; $\varepsilon$-ravnomerno skhodyaschiesya skhemy”, Zh. vychisl. matem. i matem. fiz., 48:6 (2008), 1014–1033 | MR | Zbl
[11] Blatov I. A., Dobrobog N. V., “Uslovnaya $\varepsilon$-ravnomernaya skhodimost algoritmov adaptatsii v metode konechnykh elementov dlya singulyarno vozmuschennykh zadach”, Zh. vychisl. matem. i matem. fiz., 50:9 (2010), 1550–1568 | MR | Zbl
[12] Blatov I. A., “O proektsionnom metode dlya singulyarno vozmuschennykh kraevykh zadach”, Zh. vychisl. matem. i matem. fiz., 30:7 (1990), 1031–1044 | MR
[13] Shishkin G. I., Setochnye approksimatsii singulyarno vozmuschennykh ellipticheskikh i parabolicheskikh uravnenii, UrO RAN, Ekaterinburg, 1992
[14] Marchuk G. I., Agoshkov V. I., Vvedenie v proektsionno-setochnye metody, Nauka, M., 1981 | MR
[15] Abramsson L. R., Keller H. B., Kreiss H. O., “Difference approximation for singular perturbations of systems of ordinary differential equations”, Numer. Math., 22 (1974), 367–391 | DOI | MR
[16] Stynes M., Roos H.-H., “The midpoint scheme”, Appl. Numer. Math., 23 (1997), 361–374 | DOI | MR | Zbl
[17] Andreev V. B., Kopteva N. V., “O ravnomernoi po malomu parametru skhodimosti monotonnykh trekhtochechnykh raznostnykh skhem”, Differents. ur-niya, 34:7 (1998), 921–928 | MR | Zbl
[18] Vasileva A. B., Butuzov V. F., Asimptoticheskoe razlozhenie reshenii singulyarno vozmuschennykh uravnenii, Nauka, M., 1973