On the perturbation algorithm for the semidiscrete scheme for the evolution equation and estimation of the approximate solution error using semigroups
    
    
  
  
  
      
      
      
        
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 7, pp. 1299-1322
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              In a Banach space, for the approximate solution of the Cauchy problem for the evolution equation with an operator generating an analytic semigroup, a purely implicit three-level semidiscrete scheme that can be reduced to two-level schemes is considered. Using these schemes, an approximate solution to the original problem is constructed. Explicit bounds on the approximate solution error are proved using properties of semigroups under minimal assumptions about the smoothness of the data of the problem. An intermediate step in this proof is the derivation of an explicit estimate for the semidiscrete Crank–Nicolson scheme. To demonstrate the generality of the perturbation algorithm as applied to difference schemes, a four-level scheme that is also reduced to two-level schemes is considered.
            
            
            
          
        
      @article{ZVMMF_2016_56_7_a6,
     author = {D. V. Gulua and D. L. Rogava},
     title = {On the perturbation algorithm for the semidiscrete scheme for the evolution equation and estimation of the approximate solution error using semigroups},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1299--1322},
     publisher = {mathdoc},
     volume = {56},
     number = {7},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_7_a6/}
}
                      
                      
                    TY - JOUR AU - D. V. Gulua AU - D. L. Rogava TI - On the perturbation algorithm for the semidiscrete scheme for the evolution equation and estimation of the approximate solution error using semigroups JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2016 SP - 1299 EP - 1322 VL - 56 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_7_a6/ LA - ru ID - ZVMMF_2016_56_7_a6 ER -
%0 Journal Article %A D. V. Gulua %A D. L. Rogava %T On the perturbation algorithm for the semidiscrete scheme for the evolution equation and estimation of the approximate solution error using semigroups %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2016 %P 1299-1322 %V 56 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_7_a6/ %G ru %F ZVMMF_2016_56_7_a6
D. V. Gulua; D. L. Rogava. On the perturbation algorithm for the semidiscrete scheme for the evolution equation and estimation of the approximate solution error using semigroups. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 7, pp. 1299-1322. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_7_a6/
