On the perturbation algorithm for the semidiscrete scheme for the evolution equation and estimation of the approximate solution error using semigroups
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 7, pp. 1299-1322 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In a Banach space, for the approximate solution of the Cauchy problem for the evolution equation with an operator generating an analytic semigroup, a purely implicit three-level semidiscrete scheme that can be reduced to two-level schemes is considered. Using these schemes, an approximate solution to the original problem is constructed. Explicit bounds on the approximate solution error are proved using properties of semigroups under minimal assumptions about the smoothness of the data of the problem. An intermediate step in this proof is the derivation of an explicit estimate for the semidiscrete Crank–Nicolson scheme. To demonstrate the generality of the perturbation algorithm as applied to difference schemes, a four-level scheme that is also reduced to two-level schemes is considered.
@article{ZVMMF_2016_56_7_a6,
     author = {D. V. Gulua and D. L. Rogava},
     title = {On the perturbation algorithm for the semidiscrete scheme for the evolution equation and estimation of the approximate solution error using semigroups},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1299--1322},
     year = {2016},
     volume = {56},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_7_a6/}
}
TY  - JOUR
AU  - D. V. Gulua
AU  - D. L. Rogava
TI  - On the perturbation algorithm for the semidiscrete scheme for the evolution equation and estimation of the approximate solution error using semigroups
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 1299
EP  - 1322
VL  - 56
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_7_a6/
LA  - ru
ID  - ZVMMF_2016_56_7_a6
ER  - 
%0 Journal Article
%A D. V. Gulua
%A D. L. Rogava
%T On the perturbation algorithm for the semidiscrete scheme for the evolution equation and estimation of the approximate solution error using semigroups
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 1299-1322
%V 56
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_7_a6/
%G ru
%F ZVMMF_2016_56_7_a6
D. V. Gulua; D. L. Rogava. On the perturbation algorithm for the semidiscrete scheme for the evolution equation and estimation of the approximate solution error using semigroups. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 7, pp. 1299-1322. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_7_a6/

[1] Godunov S. K., Ryabenkii V. S., Raznostnye skhemy, Nauka, M., 1973

[2] Marchuk G. I., Metody vychislitelnoi matematiki, Nauka, M., 1977

[3] Rikhtmaier R., Morton K., Raznostnye metody resheniya kraevykh zadach, Mir, M., 1972

[4] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1977

[5] Yanenko N. N., Metod drobnykh shagov resheniya mnogomernykh zadach matematicheskoi fiziki, Nauka, Novosibirsk, 1967

[6] Alibekov X. A., Sobolevskii P. E., “Ob ustoichivosti raznostnykh skhem dlya parabolicheskogo uravneniya”, Dok. AN SSSR, 232:4 (1967), 737–740

[7] Ashyralyev A., Sobolevskii P. E., “Well-posedness of parabolic difference equations”, Operator Theory: Advances and Applications, 69, Birkhauser Verlag, Berlin, 1994, 349 | MR

[8] Ashyralyev A., Sobolevskii P. E., “Naw difference schemes for partial differential equations”, Operator Theory: Advances and Applications, 148, Birkhauser Verlag, Berlin, 2004, 443 | MR | Zbl

[9] Bakaev N. Yu., “Linear discrete parabolic problems”, North-Holland Mathematics Studies, 203, Elsevier Science B. V., Amsterdam, 2006, 286 | MR | Zbl

[10] Konovaltsev I. V., “Ustoichivost v $C$ i $L_p$ dvukhsloinykh raznostnykh skhem dlya parabolicheskikh uravnenii s peremennymi koeffitsientami”, Zh. vychisl. matem. i matem. fiz., 8:4 (1968), 894–899 | MR

[11] Piskarev S., Differentsialnye uravneniya v banakhovom prostranstve i ikh approksimatsiya, NIVTs MGU, M., 2005, 287 pp.

[12] Piskarev S., Zwart H. J., “Crank–Nicolson scheme for abstract linear systems”, Numerical Functional Analys. Optimizat., 28:5–6 (2007), 717–736 | DOI | MR | Zbl

[13] Polichka A. E., Sobolevskii P. E., “O metode Rote priblizhennogo resheniya zadachi Koshi dlya differentsialnogo uravneniya v banakhovom prostranstve s peremennym neogranichennym operatorom”, Differents. ur-niya, 12:9 (1976), 1693–1704 | MR | Zbl

[14] Serdyukova S. I., “Ob ustoichivosti v $C$ lineinykh raznostnykh skhem s postoyannymi deistvitelnymi koeffitsientami”, Zh. vychisl. matem. i matem. fiz., 6:3 (1966), 478–486

[15] Crouzeix M., “Une methode multipas implicite-explicite pour l'approximation des équations d'évolution paraboliques”, Numer. Math., 35:3 (1980), 257–276 (French) | DOI | MR | Zbl

[16] Crouzeix M., Raviart P.-A., “Approximation des équations d'évolution linéaires par des métliodes à pas multiples”, C. R. Acad. Sci. Paris, 283 (1976), A367–A370 (French) | MR

[17] Le Roux M.-N., “Semidiscretization in time for parabolic problems”, Math. Comput., 33:147 (1979), 919–931 | DOI | MR | Zbl

[18] Rogava Dzh. L., Poludiskretnye skhemy dlya operatornykh differentsialnykh uravnenii, Tekhn. Un-t, Tbilisi, 1995

[19] Marchuk G. I., Agoshkov V. I., Shutyaev V. P., Sopryazhennye uravneniya i algoritmy vozmuschenii v nelineinykh zadachakh matematicheskoi fiziki, Nauka, M., 1993

[20] Agoshkov V. I., Gulua D. V., Algoritm vozmuschenii dlya realizatsii konechnomernykh approksimatsii zadach, OVM AN SSSR, M., 1990

[21] Marchuk C. I., Shaĭdurov V. V., Difference methods and their extrapolations, Springer, New York, 1983 | MR | Zbl

[22] Pereyra V., “On improving an approximate solution of a functional equation by deferred corrections”, Numer. Math., 8:3 (1966), 376–391 | DOI | MR | Zbl

[23] Pereyra V., “Accelerating the convergence of discretization algorithms”, SIAM J. Numer. Analys., 4:4 (1967), 508–533 | DOI | MR | Zbl

[24] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972

[25] Danford N., Shvarts Dzh., Lineinye operatory, v. I, Izd-vo inostr. lit., M., 1962

[26] Rogava J., Tsiklauri M., “High order accuracy decomposition schemes for evolution problem”, Lect. Notes TICMI, 7 (2006), 164 | MR | Zbl

[27] Sobolevskii P. E., “Ob ustoichivosti i skhodimosti raznostnoi skhemy Kranka–Nikolsona”, Variatsionno-raznostnye metody v matem. fiz., 1973, 146–151

[28] Rogava J., Galdava R., “On the error of estimation of the Crank–Nicholson semidiscrete scheme for the abstract parabolic equation”, Proc. I. Vekua Inst. Appl. Mat., 48 (1998), 129–159 | MR | Zbl

[29] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1977