@article{ZVMMF_2016_56_7_a6,
author = {D. V. Gulua and D. L. Rogava},
title = {On the perturbation algorithm for the semidiscrete scheme for the evolution equation and estimation of the approximate solution error using semigroups},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1299--1322},
year = {2016},
volume = {56},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_7_a6/}
}
TY - JOUR AU - D. V. Gulua AU - D. L. Rogava TI - On the perturbation algorithm for the semidiscrete scheme for the evolution equation and estimation of the approximate solution error using semigroups JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2016 SP - 1299 EP - 1322 VL - 56 IS - 7 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_7_a6/ LA - ru ID - ZVMMF_2016_56_7_a6 ER -
%0 Journal Article %A D. V. Gulua %A D. L. Rogava %T On the perturbation algorithm for the semidiscrete scheme for the evolution equation and estimation of the approximate solution error using semigroups %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2016 %P 1299-1322 %V 56 %N 7 %U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_7_a6/ %G ru %F ZVMMF_2016_56_7_a6
D. V. Gulua; D. L. Rogava. On the perturbation algorithm for the semidiscrete scheme for the evolution equation and estimation of the approximate solution error using semigroups. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 7, pp. 1299-1322. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_7_a6/
[1] Godunov S. K., Ryabenkii V. S., Raznostnye skhemy, Nauka, M., 1973
[2] Marchuk G. I., Metody vychislitelnoi matematiki, Nauka, M., 1977
[3] Rikhtmaier R., Morton K., Raznostnye metody resheniya kraevykh zadach, Mir, M., 1972
[4] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1977
[5] Yanenko N. N., Metod drobnykh shagov resheniya mnogomernykh zadach matematicheskoi fiziki, Nauka, Novosibirsk, 1967
[6] Alibekov X. A., Sobolevskii P. E., “Ob ustoichivosti raznostnykh skhem dlya parabolicheskogo uravneniya”, Dok. AN SSSR, 232:4 (1967), 737–740
[7] Ashyralyev A., Sobolevskii P. E., “Well-posedness of parabolic difference equations”, Operator Theory: Advances and Applications, 69, Birkhauser Verlag, Berlin, 1994, 349 | MR
[8] Ashyralyev A., Sobolevskii P. E., “Naw difference schemes for partial differential equations”, Operator Theory: Advances and Applications, 148, Birkhauser Verlag, Berlin, 2004, 443 | MR | Zbl
[9] Bakaev N. Yu., “Linear discrete parabolic problems”, North-Holland Mathematics Studies, 203, Elsevier Science B. V., Amsterdam, 2006, 286 | MR | Zbl
[10] Konovaltsev I. V., “Ustoichivost v $C$ i $L_p$ dvukhsloinykh raznostnykh skhem dlya parabolicheskikh uravnenii s peremennymi koeffitsientami”, Zh. vychisl. matem. i matem. fiz., 8:4 (1968), 894–899 | MR
[11] Piskarev S., Differentsialnye uravneniya v banakhovom prostranstve i ikh approksimatsiya, NIVTs MGU, M., 2005, 287 pp.
[12] Piskarev S., Zwart H. J., “Crank–Nicolson scheme for abstract linear systems”, Numerical Functional Analys. Optimizat., 28:5–6 (2007), 717–736 | DOI | MR | Zbl
[13] Polichka A. E., Sobolevskii P. E., “O metode Rote priblizhennogo resheniya zadachi Koshi dlya differentsialnogo uravneniya v banakhovom prostranstve s peremennym neogranichennym operatorom”, Differents. ur-niya, 12:9 (1976), 1693–1704 | MR | Zbl
[14] Serdyukova S. I., “Ob ustoichivosti v $C$ lineinykh raznostnykh skhem s postoyannymi deistvitelnymi koeffitsientami”, Zh. vychisl. matem. i matem. fiz., 6:3 (1966), 478–486
[15] Crouzeix M., “Une methode multipas implicite-explicite pour l'approximation des équations d'évolution paraboliques”, Numer. Math., 35:3 (1980), 257–276 (French) | DOI | MR | Zbl
[16] Crouzeix M., Raviart P.-A., “Approximation des équations d'évolution linéaires par des métliodes à pas multiples”, C. R. Acad. Sci. Paris, 283 (1976), A367–A370 (French) | MR
[17] Le Roux M.-N., “Semidiscretization in time for parabolic problems”, Math. Comput., 33:147 (1979), 919–931 | DOI | MR | Zbl
[18] Rogava Dzh. L., Poludiskretnye skhemy dlya operatornykh differentsialnykh uravnenii, Tekhn. Un-t, Tbilisi, 1995
[19] Marchuk G. I., Agoshkov V. I., Shutyaev V. P., Sopryazhennye uravneniya i algoritmy vozmuschenii v nelineinykh zadachakh matematicheskoi fiziki, Nauka, M., 1993
[20] Agoshkov V. I., Gulua D. V., Algoritm vozmuschenii dlya realizatsii konechnomernykh approksimatsii zadach, OVM AN SSSR, M., 1990
[21] Marchuk C. I., Shaĭdurov V. V., Difference methods and their extrapolations, Springer, New York, 1983 | MR | Zbl
[22] Pereyra V., “On improving an approximate solution of a functional equation by deferred corrections”, Numer. Math., 8:3 (1966), 376–391 | DOI | MR | Zbl
[23] Pereyra V., “Accelerating the convergence of discretization algorithms”, SIAM J. Numer. Analys., 4:4 (1967), 508–533 | DOI | MR | Zbl
[24] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972
[25] Danford N., Shvarts Dzh., Lineinye operatory, v. I, Izd-vo inostr. lit., M., 1962
[26] Rogava J., Tsiklauri M., “High order accuracy decomposition schemes for evolution problem”, Lect. Notes TICMI, 7 (2006), 164 | MR | Zbl
[27] Sobolevskii P. E., “Ob ustoichivosti i skhodimosti raznostnoi skhemy Kranka–Nikolsona”, Variatsionno-raznostnye metody v matem. fiz., 1973, 146–151
[28] Rogava J., Galdava R., “On the error of estimation of the Crank–Nicholson semidiscrete scheme for the abstract parabolic equation”, Proc. I. Vekua Inst. Appl. Mat., 48 (1998), 129–159 | MR | Zbl
[29] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1977