A nonlinear singular eigenvalue problem for a linear system of ordinary differential equations with redundant conditions
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 7, pp. 1294-1298 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A nonlinear eigenvalue problem for a linear system of ordinary differential equations is examined on a semi-infinite interval. The problem is supplemented by nonlocal conditions specified by a Stieltjes integral. At infinity, the solution must be bounded. In addition to these basic conditions, the solution must satisfy certain redundant conditions, which are also nonlocal. A numerically stable method for solving such a singular overdetermined eigenvalue problem is proposed and analyzed. The essence of the method is that this overdetermined problem is replaced by an auxiliary problem consistent with all the above conditions.
@article{ZVMMF_2016_56_7_a5,
     author = {A. A. Abramov and L. F. Yukhno},
     title = {A nonlinear singular eigenvalue problem for a linear system of ordinary differential equations with redundant conditions},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1294--1298},
     year = {2016},
     volume = {56},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_7_a5/}
}
TY  - JOUR
AU  - A. A. Abramov
AU  - L. F. Yukhno
TI  - A nonlinear singular eigenvalue problem for a linear system of ordinary differential equations with redundant conditions
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 1294
EP  - 1298
VL  - 56
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_7_a5/
LA  - ru
ID  - ZVMMF_2016_56_7_a5
ER  - 
%0 Journal Article
%A A. A. Abramov
%A L. F. Yukhno
%T A nonlinear singular eigenvalue problem for a linear system of ordinary differential equations with redundant conditions
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 1294-1298
%V 56
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_7_a5/
%G ru
%F ZVMMF_2016_56_7_a5
A. A. Abramov; L. F. Yukhno. A nonlinear singular eigenvalue problem for a linear system of ordinary differential equations with redundant conditions. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 7, pp. 1294-1298. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_7_a5/

[1] Abramov A. A., Konyukhova N. B., “Transfer of admissible boundary conditions from a singular point for systems of linear ordinary differential equations”, Sovjet. J. Numer. Analys. Math. Modelling, 1:4 (1986), 245–265 | MR | Zbl

[2] Dzhangirova S. A., “O mnogotochechnykh zadachakh dlya sistem obyknovennykh differentsialnykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 27:9 (1987), 1375–1380 | MR

[3] Abramov A. A., Ulyanova V. I., Yukhno L. F., “Nelokalnaya zadacha dlya singulyarnoi lineinoi sistemy obyknovennykh differentsialnykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 51:7 (2011), 1228–1235 | MR | Zbl

[4] Abramov A. A., Yukhno L. F., “Reshenie sistemy lineinykh obyknovennykh differentsialnykh uravnenii s izbytochnymi usloviyami”, Zh. vychisl. matem. i matem. fiz., 54:4 (2014), 585–590 | DOI | Zbl

[5] Abramov A. A., Yukhno L. F., “Reshenie singulyarnoi nelokalnoi zadachi dlya lineinoi sistemy obyknovennykh differentsialnykh uravnenii s izbytochnymi usloviyami”, Zh. vychisl. matem. i matem. fiz., 55:3 (2015), 385–392 | DOI | Zbl

[6] Abramov A. A., Yukhno L. F., “Metod resheniya nelineinoi spektralnoi zadachi dlya sistemy obyknovennykh differentsialnykh uravnenii s izbytochnymi usloviyami”, Differents. ur-niya, 51:7 (2015), 866–875 | DOI | Zbl

[7] Abramov A. A., “O perenose granichnykh uslovii dlya sistem obyknovennykh differentsialnykh uravnenii (variant metoda progonki)”, Zh. vychisl. matem. i matem. fiz., 1:3 (1961), 542–545 | MR | Zbl