Approximations of optimal control problems for semilinear elliptic equations with discontinuous coefficients and states and with controls in the coefficients multiplying the highest derivatives
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 7, pp. 1267-1293 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Mathematical formulations of nonlinear optimal control problems for semilinear elliptic equations with discontinuous coefficients and solutions and with controls in the coefficients multiplying the highest derivatives are studied. Finite difference approximations of optimization problems are constructed, and the approximation error is estimated with respect to the state and the cost functional. Weak convergence of the approximations with respect to the control is proved. The approximations are regularized in the sense of Tikhonov.
@article{ZVMMF_2016_56_7_a4,
     author = {F. V. Lubyshev and M. E. Fairuzov},
     title = {Approximations of optimal control problems for semilinear elliptic equations with discontinuous coefficients and states and with controls in the coefficients multiplying the highest derivatives},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1267--1293},
     year = {2016},
     volume = {56},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_7_a4/}
}
TY  - JOUR
AU  - F. V. Lubyshev
AU  - M. E. Fairuzov
TI  - Approximations of optimal control problems for semilinear elliptic equations with discontinuous coefficients and states and with controls in the coefficients multiplying the highest derivatives
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 1267
EP  - 1293
VL  - 56
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_7_a4/
LA  - ru
ID  - ZVMMF_2016_56_7_a4
ER  - 
%0 Journal Article
%A F. V. Lubyshev
%A M. E. Fairuzov
%T Approximations of optimal control problems for semilinear elliptic equations with discontinuous coefficients and states and with controls in the coefficients multiplying the highest derivatives
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 1267-1293
%V 56
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_7_a4/
%G ru
%F ZVMMF_2016_56_7_a4
F. V. Lubyshev; M. E. Fairuzov. Approximations of optimal control problems for semilinear elliptic equations with discontinuous coefficients and states and with controls in the coefficients multiplying the highest derivatives. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 7, pp. 1267-1293. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_7_a4/

[1] Vasilev F. P., Metody optimizatsii, Faktorial Press, M., 2002

[2] Lions Zh.-L., Optimalnoe upravlenie sistemami, opisyvaemymi uravneniyami s chastnymi proizvodnymi, Mir, M., 1972

[3] Lure K. A., Optimalnoe upravlenie v zadachakh matematicheskoi fiziki, Nauka, M., 1975

[4] Litvinov V. G., Optimizatsiya v ellipticheskikh granichnykh zadachakh s prilozheniyami k mekhanike, Nauka, M., 1987

[5] Raitum U. E., Zadachi optimalnogo upravleniya dlya ellipticheskikh uravnenii, Zinatne, Riga, 1989

[6] Egorov A. I., Optimalnoe upravlenie teplovymi i diffuzionnymi protsessami, Nauka, M., 1978

[7] Ishmukhametov A. Z., Voprosy ustoichivosti i approksimatsii zadach optimalnogo upravleniya, VTs RAN, M., 1999

[8] Ishmukhametov A. Z., Voprosy ustoichivosti i approksimatsii zadach optimalnogo upravleniya sistemami s raspredelennymi parametrami, VTs RAN, M., 2001

[9] Potapov M. M., Approksimatsiya ekstremalnykh zadach v matematicheskoi fizike (giperbolicheskie uravneniya), Izd-vo MGU, M., 1985

[10] Lubyshev F. V., Raznostnye approksimatsii zadach optimalnogo upravleniya sistemami, opisyvaemymi uravneniyami v chastnykh proizvodnykh, BashGU, Ufa, 1999

[11] Samarskii A. A., Andreev V. B., Raznostnye metody dlya ellipticheskikh uravnenii, Nauka, M., 1976

[12] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989

[13] Samarskii A. A., Lazarov R. D., Makarov V. L., Raznostnye skhemy dlya differentsialnykh uravnenii s obobschennymi resheniyami, Vyssh. shkola, M., 1987

[14] Samarskii A. A., Vabischevich P. N., Vychislitelnaya teploperedacha, Knizhnyi dom “LIBROKOM”, M., 2009

[15] Potapov M. M., Razgulin A. V., “Raznostnye metody v zadachakh optimalnogo upravleniya statsionarnym samovozdeistviem svetovykh puchkov”, Zh. vychisl. matem. i matem. fiz., 30:8 (1990), 1157–1169 | MR

[16] Chryssovergchi I., “Discretization methods for semilinear parabolic optimal control problems”, Int. J. Numer. Anal. Model., 3:02 (2006), 437–458 | MR

[17] Chryssovergchi I., “Mixed discretization-optimization methods for relaxed optimal control of nonlinear parabolic systems”, Proc. of the 6th WSEAS Int. Conf. on Simulation, Modelling and Optimization (Lisbon, Portugal, 2006), 41–47

[18] Chernov A. V., “O kusochno-postoyannoi approksimatsii v raspredelennykh zadachakh optimizatsii”, Tr. In-ta matem. i mekhan. UrO RAN, 21, no. 1, 2015, 264–279 | MR

[19] Lubyshev F. V., “Tochnost raznostnykh approksimatsii i regulyarizatsiya zadach optimalnogo upravleniya dlya ellipticheskogo uravneniya s upravleniyami v koeffitsientakh”, Zh. vychisl. matem. i matem. fiz., 29:9 (1989), 1431–1444

[20] Lubyshev F. V., “Approksimatsiya i regulyarizatsiya zadach optimalnogo upravleniya dlya nesamosopryazhennogo ellipticheskogo uravneniya s peremennymi koeffitsientami”, Zh. vychisl. matem. i matem. fiz., 31:1 (1991), 17–30 | MR | Zbl

[21] Lubyshev F. V., “Approksimatsiya i regulyarizatsiya zadach optimalnogo upravleniya koeffitsientami parabolicheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 33:8 (1993), 1166–1183 | MR | Zbl

[22] Lubyshev F. V., “Approksimatsiya i regulyarizatsiya zadach optimalnogo upravleniya dlya parabolicheskikh uravnenii s upravleniyami v koeffitsientakh”, Dokl. AN, 349:5 (1996), 598–602 | MR | Zbl

[23] Lubyshev F. V., Fairuzov M. E., “Approksimatsiya i regulyarizatsiya zadach optimalnogo upravleniya dlya kvazilineinykh ellipticheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 41:8 (2001), 1148–1164 | MR | Zbl

[24] Lubyshev F. V., Manapova A. R., “O nekotorykh zadachakh optimalnogo upravleniya i ikh raznostnykh approksimatsiyakh i regulyarizatsii dlya kvazilineinykh ellipticheskikh uravnenii s upravleniyami v koeffitsietakh”, Zh. vychisl. matem. i matem. fiz., 47:3 (2007), 376–396 | MR | Zbl

[25] Tsurko V. A., “O tochnosti raznostnykh skhem dlya parabolicheskikh uravnenii s razryvnym resheniem”, Differents. ur-niya, 36:7 (2000), 986–992 | MR | Zbl

[26] Tsurko V. A., “Raznostnye metody dlya zadach konvektsii-diffuzii s razryvnymi koeffitsientami i resheniyami”, Differents. ur-niya, 41:2 (2005), 274–280 | MR | Zbl

[27] Kartashov E. M., Analiticheskie metody v teorii teploprovodnosti tverdykh tel, Vyssh. shkola, M., 1985

[28] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, SO AN SSSR, Novosibirsk, 1962

[29] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973

[30] Gaevskii Kh., Greger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978

[31] Kufner A., Fuchik S., Nelineinye differentsialnye uravneniya, Nauka, M., 1988

[32] Gilbarg D., Trudinger N., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989

[33] Kinderlerer D., Stampakkya G., Vvedenie v variatsionnye neravenstva i ikh prilozheniya, Mir, M., 1983

[34] Rektoris K., Variatsionnye metody v matematicheskoi fizike i tekhnike, Mir, M., 1985

[35] Brauder F. E., Materialy k sovmestnomu sovetsko-amerikanskomu simpoziumu po uravneniyam s chastnymi proizvodnymi, Novosibirsk, 1963

[36] Drenska N. T., “Tochnost chislennykh algoritmov dlya odnomernoi zadachi ob ostyvanii metalla v formakh”, Vestn. Moskovskogo un-ta. Ser. 15. Vychisl. matem. i kibernetika, 1981, no. 4, 15–21

[37] Lubyshev F. V., Manapova A. R., “Raznostnye approksimatsii zadach optimizatsii dlya polulineinykh ellipticheskikh uravnenii v vypukloi oblasti s upravleniyami v koeffitsientakh pri starshikh proizvodnykh”, Zh. vychisl. matem. i matem. fiz., 53:1 (2013), 20–46 | DOI | MR | Zbl

[38] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1986