@article{ZVMMF_2016_56_7_a3,
author = {V. G. Zhadan},
title = {A feasible dual affine scaling steepest descent method for the linear semidefinite programming problem},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1248--1266},
year = {2016},
volume = {56},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_7_a3/}
}
TY - JOUR AU - V. G. Zhadan TI - A feasible dual affine scaling steepest descent method for the linear semidefinite programming problem JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2016 SP - 1248 EP - 1266 VL - 56 IS - 7 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_7_a3/ LA - ru ID - ZVMMF_2016_56_7_a3 ER -
%0 Journal Article %A V. G. Zhadan %T A feasible dual affine scaling steepest descent method for the linear semidefinite programming problem %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2016 %P 1248-1266 %V 56 %N 7 %U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_7_a3/ %G ru %F ZVMMF_2016_56_7_a3
V. G. Zhadan. A feasible dual affine scaling steepest descent method for the linear semidefinite programming problem. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 7, pp. 1248-1266. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_7_a3/
[1] Wolkowicz Q., Saigal R., Vandenberghe L. (eds.), Handbook of semidefinite programming, Kluwer Academic Publishers, Boston–Dordrecht–London, 2000 | MR
[2] Zhadan V. G., Orlov A. A., “Dvoistvennye metody vnutrennei tochki dlya lineinoi zadachi poluopredelennogo programmirovaniya”, Zh. vychisl. matem. i matem. fiz., 51:12 (2011), 2158–2180 | MR | Zbl
[3] Zhadan V. G., “Konechnye barerno-proektivnye metody dlya lineinogo programmirovaniya”, Metody optimizatsii i prilozheniya, 11-ya Baikalskaya mezhdunarodnaya shkola-seminar, Tr. konferentsii, plenarnye doklady (Irkutsk, 1998), 140–144
[4] Lasserre J. B., “Linear programming with positive semi-definite matreces”, MPE, 2 (1996), 499–522 | Zbl
[5] Kosolap A. I., “Simpleks-metod dlya resheniya zadach poluopredelennogo programmirovaniya”, Vestnik Donetskogo nats. un-ta. Ser. A: Estestvennye nauki, 2009, no. 2, 365–369
[6] Magnus J. R., Neudecker Q., “The elimination matrix: some lemmas and applications”, SIAM J. Alg. Disc. Meth., 1:4 (1980), 422–449 | DOI | MR | Zbl
[7] Magnus Ya. R., Neidekker Ch., Matrichnoe differentsialnoe ischislenie s prilozheniyami k statistike i ekonometrike, Fizmatlit, M., 2002
[8] Alizadeh F., Khaeberly J.-P. A., Overton M. L., “Complementarity and nondegeneracy in semidefinite programming”, Mathematical Programming. Series B, 7:2 (1997), 129–162 | MR
[9] Arnold V. I., “O matritsakh, zavisyaschikh ot parametrov”, Uspekhi matem. nauk, 26:2(158) (1971), 101–114 | MR
[10] Potaki G., “On the rank of extreme matrices in semidefinite programs and the multiplicity of optimal eigenvalues”, Mathematics of Operation Research, 23:2 (1998), 339–358 | DOI | MR
[11] Godunov S. K., Sovremennye aspekty lineinoi algebry, Nauchnaya kniga, Novosibirsk, 1997