@article{ZVMMF_2016_56_7_a2,
author = {B. M. Shumilov},
title = {Splitting algorithms for the wavelet transform of first-degree splines on nonuniform grids},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1236--1247},
year = {2016},
volume = {56},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_7_a2/}
}
TY - JOUR AU - B. M. Shumilov TI - Splitting algorithms for the wavelet transform of first-degree splines on nonuniform grids JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2016 SP - 1236 EP - 1247 VL - 56 IS - 7 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_7_a2/ LA - ru ID - ZVMMF_2016_56_7_a2 ER -
%0 Journal Article %A B. M. Shumilov %T Splitting algorithms for the wavelet transform of first-degree splines on nonuniform grids %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2016 %P 1236-1247 %V 56 %N 7 %U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_7_a2/ %G ru %F ZVMMF_2016_56_7_a2
B. M. Shumilov. Splitting algorithms for the wavelet transform of first-degree splines on nonuniform grids. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 7, pp. 1236-1247. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_7_a2/
[1] Dobeshi I., Desyat lektsii po veivletam, Per. s angl., NITs «Regulyarnaya i khaoticheskaya dinamika», Izhevsk, 2001
[2] Lyche T., Mørken K., Pelosi F., “Stable, linear spline wavelets on nonuniform knots with vanishing moments”, Computer Aided Geometric Design, 26 (2009), 203–216 | DOI | MR | Zbl
[3] Sweldens W., Schröder P., “Building your own wavelets at home”, Wavelets in Computer Graphics, ACM SIGGRAPH Course notes, 1996, 15–87
[4] Sweldens W., “The lifting scheme: A custom-design construction of biorthogonal wavelets”, Appl. Comput. Harmonic Analys., 3:2 (1996), 186–200 | DOI | MR | Zbl
[5] Stolnits E., DeRouz T., Salezin D., Veivlety v kompyuternoi grafike, Per. s angl., NITs «Regulyarnaya i khaoticheskaya dinamika», Izhevsk, 2002, 272 pp.
[6] Koro K., Abe K., “Non-orthogonal spline wavelets for boundary element analysis”, Engng. Analys. with Boundary Elements, 25 (2001), 149–164 | DOI | Zbl
[7] Shumilov B. M., Matanov Sh. M., “Algoritm s rasschepleniem veivlet-preobrazovaniya splainov pervoi stepeni”, Vestn. Tomskogo gos. un-ta. Ser. Upravlenie, vychisl. tekhn. i informatika, 2011, no. 3, 51–57
[8] Shumilov B. M., Esharov E. A., Arkabaev N. K., “Postroenie i optimizatsiya prognozov na osnove rekurrentnykh splainov pervoi stepeni”, Sibirskii zh. vychisl. matem., 13:2 (2010), 227–241 | Zbl
[9] Demyanovich Yu. K., “Kalibrovochnoe sootnoshenie dlya V-splainov na neravnomernoi setke”, Matem. modelirovanie, 13:9 (2001), 98–100 | MR | Zbl
[10] Shumilov B. M., “Algoritm s rasschepleniem veivlet-preobrazovaniya ermitovykh kubicheskikh splainov”, Vestn. Tomskogo gos. un-ta. Ser. Matematika. Mekhanika, 2010, no. 4, 45–55 | MR
[11] Shumilov B. M., “Kubicheskie multiveivlety, ortogonalnye mnogochlenam, i algoritm s rasschepleniem”, Sibirskii zh. vychisl. matem., 16:3 (2013), 283–297
[12] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978 | MR
[13] Novikov I. Ya., Protasov V. Yu., Skopina M. A., Teoriya vspleskov, Fizmatlit, M., 2006 | MR
[14] Lukashin Yu. P., Adaptivnye metody kratkosrochnogo prognozirovaniya vremennýkh ryadov, Finansy i statistika, M., 2003