@article{ZVMMF_2016_56_7_a14,
author = {E. S. Baranovskii},
title = {Mixed initial-boundary value problem for equations of motion of {Kelvin{\textendash}Voigt} fluids},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1371--1379},
year = {2016},
volume = {56},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_7_a14/}
}
TY - JOUR AU - E. S. Baranovskii TI - Mixed initial-boundary value problem for equations of motion of Kelvin–Voigt fluids JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2016 SP - 1371 EP - 1379 VL - 56 IS - 7 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_7_a14/ LA - ru ID - ZVMMF_2016_56_7_a14 ER -
%0 Journal Article %A E. S. Baranovskii %T Mixed initial-boundary value problem for equations of motion of Kelvin–Voigt fluids %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2016 %P 1371-1379 %V 56 %N 7 %U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_7_a14/ %G ru %F ZVMMF_2016_56_7_a14
E. S. Baranovskii. Mixed initial-boundary value problem for equations of motion of Kelvin–Voigt fluids. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 7, pp. 1371-1379. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_7_a14/
[1] Oskolkov A. P., “Nachalno-kraevye zadachi dlya uravnenii dvizheniya zhidkostei Kelvina–Foigta i zhidkostei Oldroita”, Kraevye zadachi matematicheskoi fiziki. 13, Tr. MIAN SSSR, 179, 1988, 126–164 | MR
[2] Oskolkov A. P., “Nelokalnye problemy dlya uravnenii zhidkostei Kelvina–Foigta i ikh $\varepsilon$-approksimatsii”, Kraevye zadachi matem. fiz. i smezhnye voprosy teorii funktsii. 26, Zapiski nauch. sem. LOMI, 221, 1995, 185–207
[3] Oskolkov A. P., “O edinstvennosti i razreshimosti v tselom kraevykh zadach dlya uravnenii dvizheniya vodnykh rastvorov polimerov”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii. 7, Zap. nauchn. sem. LOMI, 38, 1973, 98–136 | MR | Zbl
[4] Oskolkov A. P., “O razreshimosti v tselom pervoi kraevoi zadachi dlya odnoi kvazilineinoi sistemy 3-go poryadka, vstrechayuscheisya pri izuchenii dvizheniya vyazkoi zhidkosti”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii. 6, Zap. nauchn. sem. LOMI, 27, 1972, 145–160
[5] Pavlovskii V. A., “K voprosu o teoreticheskom opisanii slabykh vodnykh rastvorov polimerov”, Dokl. AN SSSR, 200:4 (1971), 809–812
[6] Oskolkov A. P., “Nonlocal problems for the equations of motion of the Kelvin–Voight fluids”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii. 23, Zap. nauchn. sem. LOMI, 197, Nauka, SPb., 1992, 120–158 | MR
[7] Sveshnikov A. G., Alshin A. B., Korpusov M. O., Pletner Yu. D., Lineinye i nelineinye uravneniya sobolevskogo tipa, Fizmatlit, M., 2007
[8] Korpusov M. O., Sveshnikov A. G., “O razrushenii resheniya sistemy uravnenii Oskolkova”, Matem. sbornik, 200:4 (2009), 83–108 | DOI | MR | Zbl
[9] Baranovskii E. S., “Issledovanie matematicheskikh modelei, opisyvayuschikh techeniya zhidkosti Foigta s lineinoi zavisimostyu komponent skorosti ot dvukh prostranstvennykh peremennykh”, Vestn. VGU. Seriya: Fizika. Matematika, 2011, no. 1, 77–93
[10] Artemov M. A., Baranovskii E. S., “Unsteady flows of low concentrated aqueous polymer solutions through a planar channel with wall slip”, European J. Advances in Eng. and Technology, 2:2 (2015), 50–54
[11] Baranovskii E. S., “An optimal boundary control problem for the motion equations of polymer solutions”, Siberian Advances in Math., 24:3 (2014), 159–168 | DOI | MR
[12] Baranovskii E. S., “O techenii polimernoi zhidkosti v oblasti s nepronitsaemymi granitsami”, Zh. vychisl. matem. i matem. fiz., 54:10 (2014), 1648–1655 | DOI | Zbl
[13] Ladyzhenskaya O. A., “O globalnoi odnoznachnoi razreshimosti dvumernykh zadach dlya vodnykh rastvorov polimerov”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii. 28, Zap. nauchn. sem. POMI, 243, 1997, 138–153 | Zbl
[14] Kuzmin M. Yu., O kraevykh zadachakh nekotorykh modelei gidrodinamiki s usloviyami proskalzyvaniya na granitse, Dis. ... kand. fiz.-matem. nauk, Voronezh, 2007
[15] Dubinskii Yu. A., “Granichnaya zadacha neprotekaniya dlya statsionarnoi sistemy uravnenii Stoksa”, Dokl. AN, 460:6 (2015), 634–637 | DOI | Zbl
[16] Dubinskii Yu. A., “O kraevoi zadache s usloviem neprotekaniya dlya statsionarnoi sistemy uravnenii Stoksa”, Probl. matem. analiza, 78 (2015), 75–83 | Zbl
[17] Galdi G. P., An introduction to the mathematical theory of the Navier–Stokes equations. Steady-state problems, Springer, New York, 2011 | MR | Zbl
[18] Litvinov B. G., Dvizhenie nelineino-vyazkoi zhidkosti, Nauka, M., 1982
[19] Baranovskii E. S., “O statsionarnom dvizhenii vyazkouprugoi zhidkosti tipa Oldroida”, Matem. sbornik, 205:6 (2014), 3–16 | DOI | MR
[20] Temam R., Uravneniya Nave–Stoksa. Teoriya i chislennyi analiz, Mir, M., 1981
[21] Simon J., “Compact sets in the space $L^p (0, T; B)$”, Ann. Mat. Pura Appl., 146:1 (1986), 65–96 | DOI | MR
[22] Adams R. A., Fournier J. J. F., Sobolev spaces, 2nd ed., Elsevier, Amsterdam, 2003 | MR