Mixed initial-boundary value problem for equations of motion of Kelvin–Voigt fluids
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 7, pp. 1371-1379 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The initial-boundary value problem for equations of motion of Kelvin–Voigt fluids with mixed boundary conditions is studied. The no-slip condition is used on some portion of the boundary, while the impermeability condition and the tangential component of the surface force field are specified on the rest of the boundary. The global-in-time existence of a weak solution is proved. It is shown that the solution is unique and depends continuously on the field of external forces, the field of surface forces, and initial data.
@article{ZVMMF_2016_56_7_a14,
     author = {E. S. Baranovskii},
     title = {Mixed initial-boundary value problem for equations of motion of {Kelvin{\textendash}Voigt} fluids},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1371--1379},
     year = {2016},
     volume = {56},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_7_a14/}
}
TY  - JOUR
AU  - E. S. Baranovskii
TI  - Mixed initial-boundary value problem for equations of motion of Kelvin–Voigt fluids
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 1371
EP  - 1379
VL  - 56
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_7_a14/
LA  - ru
ID  - ZVMMF_2016_56_7_a14
ER  - 
%0 Journal Article
%A E. S. Baranovskii
%T Mixed initial-boundary value problem for equations of motion of Kelvin–Voigt fluids
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 1371-1379
%V 56
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_7_a14/
%G ru
%F ZVMMF_2016_56_7_a14
E. S. Baranovskii. Mixed initial-boundary value problem for equations of motion of Kelvin–Voigt fluids. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 7, pp. 1371-1379. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_7_a14/

[1] Oskolkov A. P., “Nachalno-kraevye zadachi dlya uravnenii dvizheniya zhidkostei Kelvina–Foigta i zhidkostei Oldroita”, Kraevye zadachi matematicheskoi fiziki. 13, Tr. MIAN SSSR, 179, 1988, 126–164 | MR

[2] Oskolkov A. P., “Nelokalnye problemy dlya uravnenii zhidkostei Kelvina–Foigta i ikh $\varepsilon$-approksimatsii”, Kraevye zadachi matem. fiz. i smezhnye voprosy teorii funktsii. 26, Zapiski nauch. sem. LOMI, 221, 1995, 185–207

[3] Oskolkov A. P., “O edinstvennosti i razreshimosti v tselom kraevykh zadach dlya uravnenii dvizheniya vodnykh rastvorov polimerov”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii. 7, Zap. nauchn. sem. LOMI, 38, 1973, 98–136 | MR | Zbl

[4] Oskolkov A. P., “O razreshimosti v tselom pervoi kraevoi zadachi dlya odnoi kvazilineinoi sistemy 3-go poryadka, vstrechayuscheisya pri izuchenii dvizheniya vyazkoi zhidkosti”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii. 6, Zap. nauchn. sem. LOMI, 27, 1972, 145–160

[5] Pavlovskii V. A., “K voprosu o teoreticheskom opisanii slabykh vodnykh rastvorov polimerov”, Dokl. AN SSSR, 200:4 (1971), 809–812

[6] Oskolkov A. P., “Nonlocal problems for the equations of motion of the Kelvin–Voight fluids”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii. 23, Zap. nauchn. sem. LOMI, 197, Nauka, SPb., 1992, 120–158 | MR

[7] Sveshnikov A. G., Alshin A. B., Korpusov M. O., Pletner Yu. D., Lineinye i nelineinye uravneniya sobolevskogo tipa, Fizmatlit, M., 2007

[8] Korpusov M. O., Sveshnikov A. G., “O razrushenii resheniya sistemy uravnenii Oskolkova”, Matem. sbornik, 200:4 (2009), 83–108 | DOI | MR | Zbl

[9] Baranovskii E. S., “Issledovanie matematicheskikh modelei, opisyvayuschikh techeniya zhidkosti Foigta s lineinoi zavisimostyu komponent skorosti ot dvukh prostranstvennykh peremennykh”, Vestn. VGU. Seriya: Fizika. Matematika, 2011, no. 1, 77–93

[10] Artemov M. A., Baranovskii E. S., “Unsteady flows of low concentrated aqueous polymer solutions through a planar channel with wall slip”, European J. Advances in Eng. and Technology, 2:2 (2015), 50–54

[11] Baranovskii E. S., “An optimal boundary control problem for the motion equations of polymer solutions”, Siberian Advances in Math., 24:3 (2014), 159–168 | DOI | MR

[12] Baranovskii E. S., “O techenii polimernoi zhidkosti v oblasti s nepronitsaemymi granitsami”, Zh. vychisl. matem. i matem. fiz., 54:10 (2014), 1648–1655 | DOI | Zbl

[13] Ladyzhenskaya O. A., “O globalnoi odnoznachnoi razreshimosti dvumernykh zadach dlya vodnykh rastvorov polimerov”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii. 28, Zap. nauchn. sem. POMI, 243, 1997, 138–153 | Zbl

[14] Kuzmin M. Yu., O kraevykh zadachakh nekotorykh modelei gidrodinamiki s usloviyami proskalzyvaniya na granitse, Dis. ... kand. fiz.-matem. nauk, Voronezh, 2007

[15] Dubinskii Yu. A., “Granichnaya zadacha neprotekaniya dlya statsionarnoi sistemy uravnenii Stoksa”, Dokl. AN, 460:6 (2015), 634–637 | DOI | Zbl

[16] Dubinskii Yu. A., “O kraevoi zadache s usloviem neprotekaniya dlya statsionarnoi sistemy uravnenii Stoksa”, Probl. matem. analiza, 78 (2015), 75–83 | Zbl

[17] Galdi G. P., An introduction to the mathematical theory of the Navier–Stokes equations. Steady-state problems, Springer, New York, 2011 | MR | Zbl

[18] Litvinov B. G., Dvizhenie nelineino-vyazkoi zhidkosti, Nauka, M., 1982

[19] Baranovskii E. S., “O statsionarnom dvizhenii vyazkouprugoi zhidkosti tipa Oldroida”, Matem. sbornik, 205:6 (2014), 3–16 | DOI | MR

[20] Temam R., Uravneniya Nave–Stoksa. Teoriya i chislennyi analiz, Mir, M., 1981

[21] Simon J., “Compact sets in the space $L^p (0, T; B)$”, Ann. Mat. Pura Appl., 146:1 (1986), 65–96 | DOI | MR

[22] Adams R. A., Fournier J. J. F., Sobolev spaces, 2nd ed., Elsevier, Amsterdam, 2003 | MR