Mixed initial-boundary value problem for equations of motion of Kelvin–Voigt fluids
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 7, pp. 1371-1379
Voir la notice de l'article provenant de la source Math-Net.Ru
The initial-boundary value problem for equations of motion of Kelvin–Voigt fluids with mixed boundary conditions is studied. The no-slip condition is used on some portion of the boundary, while the impermeability condition and the tangential component of the surface force field are specified on the rest of the boundary. The global-in-time existence of a weak solution is proved. It is shown that the solution is unique and depends continuously on the field of external forces, the field of surface forces, and initial data.
@article{ZVMMF_2016_56_7_a14,
author = {E. S. Baranovskii},
title = {Mixed initial-boundary value problem for equations of motion of {Kelvin{\textendash}Voigt} fluids},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1371--1379},
publisher = {mathdoc},
volume = {56},
number = {7},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_7_a14/}
}
TY - JOUR AU - E. S. Baranovskii TI - Mixed initial-boundary value problem for equations of motion of Kelvin–Voigt fluids JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2016 SP - 1371 EP - 1379 VL - 56 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_7_a14/ LA - ru ID - ZVMMF_2016_56_7_a14 ER -
%0 Journal Article %A E. S. Baranovskii %T Mixed initial-boundary value problem for equations of motion of Kelvin–Voigt fluids %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2016 %P 1371-1379 %V 56 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_7_a14/ %G ru %F ZVMMF_2016_56_7_a14
E. S. Baranovskii. Mixed initial-boundary value problem for equations of motion of Kelvin–Voigt fluids. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 7, pp. 1371-1379. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_7_a14/