Exact solutions of the generalized sinh-Gordon equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 7 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we successfully derive a new exact traveling wave solutions of the generalized Sinh–Gordon equation by new application of the homogeneous balance method. This method could be used in further works to establish more entirely new solutions for other kinds of nonlinear evolution equations arising in physics.
@article{ZVMMF_2016_56_7_a11,
     author = {A. Neirameh},
     title = {Exact solutions of the generalized {sinh-Gordon} equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1350},
     year = {2016},
     volume = {56},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_7_a11/}
}
TY  - JOUR
AU  - A. Neirameh
TI  - Exact solutions of the generalized sinh-Gordon equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 1350
VL  - 56
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_7_a11/
LA  - en
ID  - ZVMMF_2016_56_7_a11
ER  - 
%0 Journal Article
%A A. Neirameh
%T Exact solutions of the generalized sinh-Gordon equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 1350
%V 56
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_7_a11/
%G en
%F ZVMMF_2016_56_7_a11
A. Neirameh. Exact solutions of the generalized sinh-Gordon equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 7. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_7_a11/

[1] D. Bleecker, G. Csordas, Basic Partial Differential Equations, Chapman and Hall, New York, 1995 | MR

[2] S. J. Farlow, Partial Differential Equations for Scientists and Engineers, Dover, New York, 1993 | MR | Zbl

[3] F. John, Partial Differential Equations, Springer-Verlag, New York, 1982 | MR | Zbl

[4] S. A. El-Wakil, M. A. Abdou, “New exact travelling wave solutions using modified extended tanh-function method”, Chaos Solitons Fractals, 31:4 (2007), 840–852 | DOI | MR | Zbl

[5] E. Fan, “Extended tanh-function method and its applications to nonlinear equations”, Phys. Lett. A, 277:4–5 (2000), 212–218 | DOI | MR | Zbl

[6] A. M. Wazwaz, “The tanh-function method: Solitons and periodic solutions for the Dodd–Bullough–Mikhailov and the Tzitzeica–Dodd–Bullough equations”, Chaos Solitons Fractals, 25:1 (2005), 55–63 | DOI | MR | Zbl

[7] A. Biswas, “Optical solitons with time-dependent dispersion, nonlinearity and attenuation in a Kerr-law media”, Int. J. Theor. Phys., 48 (2009), 256–260 | DOI | Zbl

[8] A. Biswas, “1-Soliton solution of the $\mathrm{B(m, n)}$ equation with generalized evolution”, Commun. Nonlinear Sci. Numer. Simul., 14 (2009), 3226–3229 | DOI | MR | Zbl

[9] A. Biswas, “Solitary wave solution for KdV equation with power-law nonlinearity and time-dependent coefficients”, Nonlinear Dyn., 58 (2009), 345–348 | DOI | MR | Zbl

[10] A. Biswas, “1-Soliton solution of the $\mathrm{K(m, n)}$ equation with generalized evolution”, Phys. Lett. A, 372 (2008), 4601–4602 | DOI | MR | Zbl

[11] A. Biswas, “Solitary wave solution for the generalized Kawahara equation”, Appl. Math. Lett., 22 (2009), 208–210 | DOI | MR | Zbl

[12] W. X. Ma, “Travelling wave solutions to a seventh order generalized KdV equation”, Phys. Lett. A, 188 (1993), 221–224 | MR

[13] W. Malfliet, “Solitary wave solutions of nonlinear wave equations”, Am. J. Phys., 60:7 (1992), 650–654 | DOI | MR | Zbl

[14] W. X. Ma, T. W. Huang, Y. Zhang, “A multiple exp-function method for nonlinear differential equations and its application”, Phys. Scr., 82 (2010), 065003 | DOI | Zbl

[15] N. A. Kudryashov, “Exact solitary waves of the Fisher equation”, Phys. Lett. A, 342:1–2 (2005), 99–106 | DOI | MR | Zbl

[16] N. A. Kudryashov, “Simplest equation method to look for exact solutions of nonlinear differential equations”, Chaos Soliton Fractals, 24:5 (2005), 1217–1231 | DOI | MR | Zbl

[17] R. Hirota, “Exact solution of the Korteweg-de Vries equation for multiple collision of solitons”, Phys. Rev. Lett., 27 (1971), 1192–1194 | DOI | Zbl

[18] A. M. Wazwaz, “Exact solutions for the generalized sine-Gordon and the generalized sinh-Gordon equations”, Chaos Soliton Fractals, 28 (2006), 127–135 | DOI | MR | Zbl