Comparison of two reliable analytical methods based on the solutions of fractional coupled Klein–Gordon–Zakharov equations in plasma physics
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 7 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, homotopy perturbation transform method and modified homotopy analysis method have been applied to obtain the approximate solutions of the time fractional coupled Klein–Gordon–Zakharov equations. We consider fractional coupled Klein–Gordon–Zakharov equation with appropriate initial values using homotopy perturbation transform method and modified homotopy analysis method. Here we obtain the solution of fractional coupled Klein–Gordon–Zakharov equation, which is obtained by replacing the time derivatives with a fractional derivatives of order $\alpha \in (1, 2], \beta \in (1, 2]$. Through error analysis and numerical simulation, we have compared approximate solutions obtained by two present methods homotopy perturbation transform method and modified homotopy analysis method. The fractional derivatives here are described in Caputo sense.
@article{ZVMMF_2016_56_7_a10,
     author = {S. Saha Ray and S. Sahoo},
     title = {Comparison of two reliable analytical methods based on the solutions of fractional coupled {Klein{\textendash}Gordon{\textendash}Zakharov} equations in plasma physics},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1349},
     year = {2016},
     volume = {56},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_7_a10/}
}
TY  - JOUR
AU  - S. Saha Ray
AU  - S. Sahoo
TI  - Comparison of two reliable analytical methods based on the solutions of fractional coupled Klein–Gordon–Zakharov equations in plasma physics
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 1349
VL  - 56
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_7_a10/
LA  - en
ID  - ZVMMF_2016_56_7_a10
ER  - 
%0 Journal Article
%A S. Saha Ray
%A S. Sahoo
%T Comparison of two reliable analytical methods based on the solutions of fractional coupled Klein–Gordon–Zakharov equations in plasma physics
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 1349
%V 56
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_7_a10/
%G en
%F ZVMMF_2016_56_7_a10
S. Saha Ray; S. Sahoo. Comparison of two reliable analytical methods based on the solutions of fractional coupled Klein–Gordon–Zakharov equations in plasma physics. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 7. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_7_a10/

[1] T. Wang, J. Chen, L. Zhang, “Conservative difference methods for the Klein–Gordon–Zakharov equations”, J. Comput. Appl. Math., 205 (2007), 430–452 | DOI | MR | Zbl

[2] M. Dehghan, A. Nikpour, “The solitary wave solution of coupled Klein–Gordon–Zakharov equations via two different numerical methods”, Comput. Phys. Commun., 184 (2013), 2145–2158 | DOI | MR

[3] M. Madani, M. Fathizadeh, Y. Khan, A. Yildirim, “On the coupling of the homotopy perturbation method and Laplace transformation”, Math. Comput. Model., 53:9–10 (2011), 1937–1945 | DOI | MR | Zbl

[4] Y. Khan, Q. Wu, “Homotopy perturbation transform method for nonlinear equations using He’s polynomial”, Comput. Math. Appl., 61 (2011), 1963–1967 | DOI | MR | Zbl

[5] Y. Liu, “Approximate solutions of fractional nonlinear equations using homotopy perturbation transformation method”, Abstract Appl. Anal., 2012, 752869, 14 pp. | MR | Zbl

[6] S. Liao, Beyond Perturbation: Introduction to the Modified Homotopy Analysis Method, Chapman and Hall/CRC, Boca Raton, 2003 | MR

[7] S. Liao, The proposed homotopy analysis techniques for the solution of nonlinear problems, Ph. D. Thesis, Shanghai Jiao Tong Univ., Shanghai, 1992

[8] S. Liao, Homotopy Analysis Method in Nonlinear Differential Equations, Springer, Heidelberg, 2012 | Zbl

[9] S. Liao, “On the homotopy analysis method for nonlinear problems”, Appl. Math. Comput., 147 (2004), 499–513 | MR | Zbl

[10] M. Zurigat, S. Momani, Z. Odibat, A. Alawneh, “The homotopy analysis method for handling systems of fractional differential equations”, Appl. Math. Model., 34 (2010), 24–35 | DOI | MR | Zbl

[11] S. Saha Ray, A. Patra, “Application of homotopy analysis method and Adomian decomposition method for the solution of neutron diffusion equation in the hemisphere and cylindrical reactors”, J. Nuclear Eng. Technol., 1:2–3 (2011), 1–14

[12] M. G. Sakar, F. Erdogan, “The homotopy analysis method for solving the time-fractional Fornberg–Whitham equation and comparison with Adomian’s decomposition method”, Appl. Math. Model., 37 (2013), 8876–8885 | DOI | MR

[13] J. Wang, L. Biao, Y. Wang-Chuan, “Approximate solution for the Klein–Gordon–Schrodinger equation by the homotopy analysis method”, Chin. Phys. B, 19:3 (2010), 030401, 7 pp. | DOI

[14] I. Podlubny, Fractional Differential Equations, Academic, New York, 1999 | MR | Zbl

[15] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Taylor and Francis, London, 2002 | MR