@article{ZVMMF_2016_56_7_a10,
author = {S. Saha Ray and S. Sahoo},
title = {Comparison of two reliable analytical methods based on the solutions of fractional coupled {Klein{\textendash}Gordon{\textendash}Zakharov} equations in plasma physics},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1349},
year = {2016},
volume = {56},
number = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_7_a10/}
}
TY - JOUR AU - S. Saha Ray AU - S. Sahoo TI - Comparison of two reliable analytical methods based on the solutions of fractional coupled Klein–Gordon–Zakharov equations in plasma physics JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2016 SP - 1349 VL - 56 IS - 7 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_7_a10/ LA - en ID - ZVMMF_2016_56_7_a10 ER -
%0 Journal Article %A S. Saha Ray %A S. Sahoo %T Comparison of two reliable analytical methods based on the solutions of fractional coupled Klein–Gordon–Zakharov equations in plasma physics %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2016 %P 1349 %V 56 %N 7 %U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_7_a10/ %G en %F ZVMMF_2016_56_7_a10
S. Saha Ray; S. Sahoo. Comparison of two reliable analytical methods based on the solutions of fractional coupled Klein–Gordon–Zakharov equations in plasma physics. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 7. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_7_a10/
[1] T. Wang, J. Chen, L. Zhang, “Conservative difference methods for the Klein–Gordon–Zakharov equations”, J. Comput. Appl. Math., 205 (2007), 430–452 | DOI | MR | Zbl
[2] M. Dehghan, A. Nikpour, “The solitary wave solution of coupled Klein–Gordon–Zakharov equations via two different numerical methods”, Comput. Phys. Commun., 184 (2013), 2145–2158 | DOI | MR
[3] M. Madani, M. Fathizadeh, Y. Khan, A. Yildirim, “On the coupling of the homotopy perturbation method and Laplace transformation”, Math. Comput. Model., 53:9–10 (2011), 1937–1945 | DOI | MR | Zbl
[4] Y. Khan, Q. Wu, “Homotopy perturbation transform method for nonlinear equations using He’s polynomial”, Comput. Math. Appl., 61 (2011), 1963–1967 | DOI | MR | Zbl
[5] Y. Liu, “Approximate solutions of fractional nonlinear equations using homotopy perturbation transformation method”, Abstract Appl. Anal., 2012, 752869, 14 pp. | MR | Zbl
[6] S. Liao, Beyond Perturbation: Introduction to the Modified Homotopy Analysis Method, Chapman and Hall/CRC, Boca Raton, 2003 | MR
[7] S. Liao, The proposed homotopy analysis techniques for the solution of nonlinear problems, Ph. D. Thesis, Shanghai Jiao Tong Univ., Shanghai, 1992
[8] S. Liao, Homotopy Analysis Method in Nonlinear Differential Equations, Springer, Heidelberg, 2012 | Zbl
[9] S. Liao, “On the homotopy analysis method for nonlinear problems”, Appl. Math. Comput., 147 (2004), 499–513 | MR | Zbl
[10] M. Zurigat, S. Momani, Z. Odibat, A. Alawneh, “The homotopy analysis method for handling systems of fractional differential equations”, Appl. Math. Model., 34 (2010), 24–35 | DOI | MR | Zbl
[11] S. Saha Ray, A. Patra, “Application of homotopy analysis method and Adomian decomposition method for the solution of neutron diffusion equation in the hemisphere and cylindrical reactors”, J. Nuclear Eng. Technol., 1:2–3 (2011), 1–14
[12] M. G. Sakar, F. Erdogan, “The homotopy analysis method for solving the time-fractional Fornberg–Whitham equation and comparison with Adomian’s decomposition method”, Appl. Math. Model., 37 (2013), 8876–8885 | DOI | MR
[13] J. Wang, L. Biao, Y. Wang-Chuan, “Approximate solution for the Klein–Gordon–Schrodinger equation by the homotopy analysis method”, Chin. Phys. B, 19:3 (2010), 030401, 7 pp. | DOI
[14] I. Podlubny, Fractional Differential Equations, Academic, New York, 1999 | MR | Zbl
[15] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Taylor and Francis, London, 2002 | MR