Optimal monotonization of a high-order accurate bicompact scheme for the nonstationary multidimensional transport equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 6, pp. 973-988 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A hybrid scheme is proposed for solving the nonstationary inhomogeneous transport equation. The hybridization procedure is based on two baseline schemes: (1) a bicompact one that is fourth-order accurate in all space variables and third-order accurate in time and (2) a monotone first-order accurate scheme from the family of short characteristic methods with interpolation over illuminated faces. It is shown that the first-order accurate scheme has minimal dissipation, so it is called optimal. The solution of the hybrid scheme depends locally on the solutions of the baseline schemes at each node of the space-time grid. A monotonization procedure is constructed continuously and uniformly in all mesh cells so as to keep fourth-order accuracy in space and third-order accuracy in time in domains where the solution is smooth, while maintaining a high level of accuracy in domains of discontinuous solution. Due to its logical simplicity and uniformity, the algorithm is well suited for supercomputer simulation.
@article{ZVMMF_2016_56_6_a4,
     author = {E. N. Aristova and B. V. Rogov and A. V. Chikitkin},
     title = {Optimal monotonization of a high-order accurate bicompact scheme for the nonstationary multidimensional transport equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {973--988},
     year = {2016},
     volume = {56},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_6_a4/}
}
TY  - JOUR
AU  - E. N. Aristova
AU  - B. V. Rogov
AU  - A. V. Chikitkin
TI  - Optimal monotonization of a high-order accurate bicompact scheme for the nonstationary multidimensional transport equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2016
SP  - 973
EP  - 988
VL  - 56
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_6_a4/
LA  - ru
ID  - ZVMMF_2016_56_6_a4
ER  - 
%0 Journal Article
%A E. N. Aristova
%A B. V. Rogov
%A A. V. Chikitkin
%T Optimal monotonization of a high-order accurate bicompact scheme for the nonstationary multidimensional transport equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2016
%P 973-988
%V 56
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_6_a4/
%G ru
%F ZVMMF_2016_56_6_a4
E. N. Aristova; B. V. Rogov; A. V. Chikitkin. Optimal monotonization of a high-order accurate bicompact scheme for the nonstationary multidimensional transport equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 56 (2016) no. 6, pp. 973-988. http://geodesic.mathdoc.fr/item/ZVMMF_2016_56_6_a4/

[1] Aristova E. N., Goldin V. Ya., “Ekonomichnyi raschet mnogogruppovogo uravneniya perenosa neitronov dlya perescheta usrednennykh po spektru sechenii”, Matem. modelirovanie, 20:11 (2008), 41–54 | Zbl

[2] Aristova E. N., Baidin D. F., “Ekonomichnost metodov kvazidiffuzii rascheta kriticheskikh parametrov bystrogo reaktora”, Matem. modelirovanie, 24:4 (2012), 129–136

[3] Belotserkovskii O. M., Fomin V. N., “Raschet techenii izluchayuschego gaza v udarnom sloe”, Zh. vychisl. matem. i matem. fiz., 9:2 (1969), 397–412 | Zbl

[4] Belotserkovskii O. M., Osetrova S. D., Fomin V. N., Kholodov A. S., “Giperzvukovoe obtekanie zatuplennykh tel potokom izluchayuschego gaza”, Zh. vychisl. matem. i matem. fiz., 14:4 (1974), 992–1003

[5] Aristova E. N., Iskakov A. B., Lebo I. G., Tishkin V. F., “2D Lagrangian code LATRANT for simulation radiation gas dynamic problems”, ECLIM2002 (December 2003), Proc. SPIE, 5228, eds. O. N. Krokhin, S. Y. Gus'kov, Yu. A. Mercul'ev, 131–142 | DOI

[6] Kulikovskii A. G., Pogorelov N. V., Semenov A. Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, Izd. 2-e, ispr. i dop., Fizmatlit, M., 2012, 656 pp.

[7] Aristova E. N., Rogov B. V., “O realizatsii granichnykh uslovii v bikompaktnykh skhemakh dlya lineinogo uravneniya perenosa”, Matem. modelirovanie, 24:10 (2012), 3–14

[8] Rogov B. V., Mikhailovskaya M. N., “Bikompaktnye skhemy chetvertogo poryadka approksimatsii dlya giperbolicheskikh uravnenii”, Dokl. AN, 430:4 (2010), 470–474 | Zbl

[9] Rogov B. V., Mikhailovskaya M. N., “Monotonnye bikompaktnye skhemy dlya lineinogo uravneniya perenosa”, Matem. modelirovanie, 23:6 (2011), 98–110 | Zbl

[10] Mikhailovskaya M. N., Rogov B. V., “Monotonnye kompaktnye skhemy beguschego scheta dlya sistem uravnenii giperbolicheskogo tipa”, Zh. vychisl. matem. i matem. fiz., 52:4 (2012), 672–695 | MR | Zbl

[11] Tolstykh A. I., “O metode chislennogo resheniya uravneniya Nave–Stoksa szhimaemogo gaza v shirokom diapazone chisel Reinoldsa”, Dokl. AN SSSR, 210:1 (1973), 48–51 | Zbl

[12] Belotserkovskii O. M., Byrkin A. P., Mazurov A. P., Tolstykh A. I., “Raznostnyi metod povyshennoi tochnosti dlya rascheta techenii vyazkogo gaza”, Zh. vychisl. matem. i matem. fiz., 22:6 (1982), 1480–1490 | MR | Zbl

[13] Aristova E. N., Rogov B. V., “Bicompact scheme for the multidimensional stationary linear transport equation”, Appl. Numer. Math., 93 (2015), 3–14 | DOI | MR | Zbl

[14] Godunov S. K., “Raznostnyi metod chislennogo rascheta razryvnykh reshenii uravnenii gidrodinamiki”, Matem. sb., 47(89):3 (1959), 271–306 | MR | Zbl

[15] Aristova E. N., Rogov B. V., Chikitkin A. V., “Monotonizatsiya vysokotochnoi bikompaktnoi skhemy dlya statsionarnogo mnogomernogo uravneniya perenosa”, Matem. modelirovanie, 27:8 (2015), 32–46

[16] Goldin V. Ya., “Kvazidiffuznyi metod resheniya kineticheskogo uravneniya”, Zh. vychisl. matem. i matem. fiz., 4:6 (1964), 1078–1087 | MR

[17] Goldin V. Ya., “O matematicheskom modelirovanii zadach sploshnoi sredy s neravnovesnym perenosom”, Sovremennye problemy matem. fiz. i vychisl. matem., Nauka, M., 1982, 113–127

[18] Fedorenko R. P., “Primenenie raznostnykh skhem vysokoi tochnosti dlya chislennogo resheniya giperbolicheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 2:6 (1962), 1122–1128 | MR | Zbl

[19] Belotserkovskii O. M., Panarin A. I., Schennikov V. V., “Metod parametricheskoi korrektsii raznostnykh skhem”, Zh. vychisl. matem. i matem. fiz., 24:1 (1984), 65–74 | MR | Zbl

[20] Khairer E., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999

[21] Kalitkin N. N., Koryakin P. V., Chislennye metody, v. 2, Metody matematicheskoi fiziki, Izdatelskii tsentr “Akademiya”, M., 2013

[22] Goldin V. Ya., Kalitkin N. N., Shishova T. V., “Nelineinye raznostnye skhemy dlya giperbolicheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 5:5 (1965), 938–944 | MR

[23] Rogov B. V., “Vysokotochnaya monotonnaya kompaktnaya skhema beguschego scheta dlya mnogomernykh uravnenii giperbolicheskogo tipa”, Zh. vychisl. matem. i matem. fiz., 53:2 (2013), 264–274 | DOI | MR | Zbl

[24] Chikitkin A. V., Rogov B. V., Utyuzhnikov S. V., “High-order accurate monotone compact running scheme for multidimensional hyperbolic equations”, Appl. Numer. Math., 93 (2015), 150–163 | DOI | MR | Zbl

[25] Aristova E. N., Martynenko S. V., “Bikompaktnye skhemy Rogova dlya mnogomernogo neodnorodnogo lineinogo uravneniya perenosa pri bolshikh opticheskikh tolschinakh”, Zh. vychisl. matem. i matem. fiz., 53:10 (2013), 1684–1697 | DOI | Zbl

[26] Kholodov A. S., Kholodov Ya. A., “O kriteriyakh monotonnosti raznostnykh skhem dlya uravnenii giperbolicheskogo tipa”, Zh. vychisl. matem. i matem. fiz., 46:9 (2006), 1638–1667 | MR